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Abstract·-A group-thel'retic metho,l for the analysis of I>ifun:ation I>l'havior llf rq~ular-polyglll1al

symmetric structures is dcsnil>cd. PllSsil>le I>ifurcation paths ,Ind points of these stru,·tures arc
categori/ed in terms of dihedral amI cyclic gwups. which e~prcss the symmetry. In particular. we
olfer a complete descriptilln of those double bifurcatilln points which oeeur due to gnllip symmetry.
The type. the l1uml>cr. and the stal>ility ofhifurc:ltilln p<lths hranching at these points are dclerminClI
hy dCriving hifureatilln equations. The e.'(istence of a potential fun.:lion pl:lyS a suhstantial wle I'I!'
the e.'(istence of hili.m:ati,'n paths. As a result of these. all possil>le hifun:ation process can he kllllwn
II priori as a natural cllflsequcnce of I>ifun::ltion hierarchy I>cli,re actual numcrical analysis. An
implemcntation of this lIu:tlwd in nnlllencal analysis shows its validity and nsal>ility.

I. INTI{()l>lICTION

Stnu.:tun:s with symmetry have played an important role in the history of human arehi­
tectun:s from the Greek or Roman eras. Among modern architectures, we may also lind
structures which preserve some symmetry. The reticulated truss domes of Fig. I may serve
as such an example.

Such symmetry, however, can often be broken at the onset of bifurcation buckling
behavior, which is one of the typical collapse types of structures. Naturally, thcoretical
study and computer-assisted numerical analysis of this behavior are of most practical
importance.

Such buckling behavior can be interpreted as an instability induced by a singular
tangent-stiffness matrix-linearized eigenvalue problcm--of structural systems. Singular
(critical) points arc where one or more eigenvalues of this matrix vanish. and it is at such
points (with some addition.ll conditions) where bifurcation buckling actually takes place.
In fact. from a singular point on a fundamental solution path, secondary (post-buckling)
paths hifurcate, the number of which being in general gre'lter than one.

In view of its pmctical and theoretical importance, the problem of clastic instability
has been the subject of .1 number of extensive theoretical studies. For instance, the static
perturb'ltion method is an established means of studying clastic buckling. imperfection
sensitivities. and so on : sec. e.g., HlIlchinson and Koiter ( 1970) alld Thompson and II unt
(1973). The eigenvalue-analysis method seems to be an alternative in computer-assisted
numerical buckling analysis: sec, for example, Timoshenko and Gere (1961).

It should be noted that. .ll the expense of beauty, symmetric structures have much
more complex bifurcation behavior. By "bifurcation behavior", we mean the number, the
st.lbility. and the symmetry of bifurcating br'lnches. More precisely. multiple critical points.
where more than one eigenvalue simultaneously vanishes. appear inherently in such struc­
tures due to the presence of symmetry. The essential point here is that such multiplicity
appears in a generic manner. This "genericity" implies that such singularities appear with
a change of a single physical parameter (e.g. the loading pammeter).
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Fig. I(a). R~gular·triangulartruss dome (D1-equivariantl.
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Fig. I(b). Spheri<:al L1ial1lond shell (D.·cquivariant).
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Fig. I(e). Sehwedler dome (C-equivariant).
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We classify multiple critical points into two types: parametric and group-theoretic.
Group-theoretic multiple points are those which appear inherently in structures even with
one physical parameter if they ha\e some symmetry. On the other hand. parametric multiple
points are those which appear as a coincidence of a pair of simple critical points. In physical
experiments they are observed only when more than one physical parameter is changed.
and hence are rare (i.e. non-generic) in customary structural analysis.

Accordingly. the critical points which appear in a symmetric structure consist of two
major types. simple critical points and multiple ones due to symmetry. This shows a sharp
contrast with the case of non-symmetric structures. where only simple critical points appear
genericaIly. Buckling and bifurcation at simple points have been extensively studied (see.
e.g.. Thompson and Hunt. 1973: Sattinger. 1979. 19S0; Fujii and Yamaguti. 1980; Hunt.
1986). However. the importance of group-theoretic multiple points can never be ignored in
the case of symmetric structures.

With regard to the static perturbation method. the degeneracy (multiplicity) due to
the group-theoretic symmetry results in annihilating some lower-order derivatives of the
total potential energy function. We should note that this degeneracy has so far been treated
in an ad hoc manner within this method.

The alternative method of bifurcation analysis. i.e. the eigenvalue analysis. finds a
bifurcation path at a multiple point by means of an iterative procedure starting from a
plallsihle branching direction which is selected on a trial-and-error basis. This method is
more convenient and less costly than the former if it is adequate. Although the critical
eigenvectors at a multiple point form a multi-dimensional space. only a finite number of
these correspond to the directions of bifurcation paths. as Hosono (1976) has noted in an
empirical manner. The crucial dilTIculty in this method is that. notwithstanding its merits.
it can never guarantce in principle to yield the complete set of bifurcation paths at a multiple
bifurcation point. In short. the dilliculty in numerical analysis mainly comes from the
inherent group-theoretic degeneracy.

Summing up the preceding arguments. vital questions to be answered seem to be:

(Q I) how the hierarchy of slll:cessive bifurcations is described in terms of the group
symmetry of the system'?

(Q2) how the symmetry of bifurcation paths is determined'?
(Q3) how the f11111/her of bifurcation paths is determined'?
(Q4) how the directio/l of bifurcation paths is found'?

In view of recent developments of group-theoretic bifurcation theory in the field of
non-linear mathematics. bifurcation structures near singular points. whether simple or
multiple. c,ln be investigated theoreticaIly. In p'lrticular. questions as above can be com­
pletely ,mswered CI priori if the concept of group symmetry is taken into account in the
theory. A combination of group-theoretic bifurcation theory with the conventional static
perturbation or eigenvalue method appears to give a more comprehensive and simpler way
of describing and tracing bifurcation behavior.

The aim of this paper is. through an extension and reorganization of those results
hitherto developed on group-theoretic double singularity. to make the bifurcation structure
more transparent. and provide the results in a form readily accessible for engineers. Since
they include a priori information on the structure of bifurcations ncar a multiple point (as
wiIl be shown later). such mathematical results seem to serve as a basic tool for engineers
to perform numerical analysis. e.g. by the eigenvalue method. Emphasis is placed on dihedral
groups D•• i.e. groups of regular polygons. which appear in many structures of practical
import,mcc.

An additional note. which appears to be not fuIly recognized so far. is given about a
system which is equivariant to a cyclic group Cn (namely. a system with rotational n-gon
symmetry. but without reflections): a C.-equivariant system arises from a structure with
cyclic symmetry or from a secondary bifurcated state ofa structure with dihedral symmetry.
Since many structures arc in general potential systems. the bifurcation behavior of structural
systems shows some special features. For details. see Appendix A.
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We shall present a complete diagram of bifurcation hierarchy which can appear as Dn­

and C-equivariant systems. This diagram gives complete information about possible types
of successive bifurcations. the number of bifurcating branches. their stability. and so on.

In fact. referring to this hierarchy diagram. we can understand a very complex bifur­
cation behavior of symmetric truss domes. The diagram explains the empirical observation
(cf. Section 6 and also Ikeda and Torii. 1986) that a C-symmetric path can never bifurcate
directly from a Do-symmetric path. It is to be noted that all conclusions drawn here are
applicable to bifurcation phenomena of systems other than truss domes. whenever they
have some dihedral or cyclic symmetry.

The mathematical tools employed in this paper are:

(I) group-theoretic bifurcation theory (see. e.g.. Sattinger. 1979).
(2) application of this theory to D" (Sattinger. 1979. 1983; Fujii ('tal.. 198~; Golubitsky

ct al.. 1988; Healey. 1985. 1988; Dellnitz and Werner. 1989).
(3) categoriza tion ofgroup-theoretic double points of Dn-equivariant truss dome struc­

tures by means of the index (lkeda and Torii. 1986).
(4) results of standard (isotypic) decomposition that provide us with information

about the symmetry of eigenfunction (Fujii ct al.. 198~). and
(5) a remark on a C-equivariant system. and especially an existence proof of bifur­

cating branches for potential systems (Krasnosel'skii. 1964; Poston and Stewart. 1978).

A few remarks follow. Firstly. concerning "parametric" multiple points. extensive
studies have oeen made for systems of reaction-ditrusion equations; sec. e.g.. Fujii ct al.
( 1I)X~) and refcrem:es therein.

Secondly. the concept of index. which denotes the ditrerence of the level of symmetry
of the fundamental and hifurcated paths. has already heen used as a characteristic of
symmetric truss domes by Ikeda and Torii (11)X6). Such results will oe systematically
sunHllari/ed and extended in this paper.

The tinal remark is about C,elluivariant systems. For general Cn-symmetric systems.
it has oeen "well" recogni/ed that secondary paths cannot oranch from a group-theoretic
double point (sec. e.g.. Sattinger. 11)71). Ilowever. oifurcation paths do oranch at a group­
theorciic douole point for a (>elluivariant structural system that usually has a potential
function. Altllllugh this fact has been known in mathematics (e.g. Krasnoscl'skii. 1964). we
shall otli:r a oriel' account on this in view of its importancc in structural systems.

2. A SIMPLE FX,\MPLE

Before cntcring into gencral scttings. we shall provide hcrc a simple example of bifur­
cation behavior that will scrvc to givc concrcte ideas to the arguments in subsequent sections.
The objective of this section is to identify the problems to be addressed later and to illustrate
the usc of group-theoretic terminology.

We consider the elastic regular-triangular truss dome of Fig. I(a). subjected to a
symmetric loading. All the memoers arc assumed to have the same material and sectional
properties. This dome is apparently symmetric in geomt:tric configuration. in stitrness
distribution and in loading. The t:quilibrium t:q uations for this dome remain invariant undt:r
two kinds of geometric transformations. namely the counterclockwise rotation r around
the Z-axis at an angh: of ~n/3 and the reflection s with respect to XZ-plane. This geometric
invariance is mathematically expressed as the equivariance of the bifurcation problem to a
group. i.e. the dihedral group of degree threet

where the clement c stands for the identity transformation. and r' stands for counter­
clockwise rotation around the Z-axis at an angle of 2njj3 (j = I. ~).

+In the S-:hoenflies notalion this group is denoted as C I,' whereas {) I means another (isomorphi-:) group
in whi-:h .< represenls the half-rotalilll1 around the X-a.xis. They arc isomorphic as ahstraet groups hut arc
dIStinguished as subgroups \'1' all isometrics.
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---- axis of line symmetry

Fig. ~. Planc vicws of bifurcation patterns of regular-triangular free nodes of thc rq;ular·triangular
dome.

Deformation (bifurcation) patterns of this domc are oftcn less symmctric than D,
but may rctain part of its symmctry. which is reprcscnted by its invariance under thc
transformations in the subgroups of D, i.c.

Figure ~ shows plane views of deformation patterns of the regular-triangular free nodcs I.
2 and 3 of this domc. Solid dash lines denotc the axis of line symmctry. Group f), dcnotcs
a uniform cxpansion or contraction (If the regular triangle. accompanied hy a uniform lloat
or drop. Group C, expresses a rotated-regular-triangular pattcrn indicating a rotation
aboutthc Z-axis. accompanied also by a uniform expansion or contraction ami by a uniform
flout or drop. Group D', (j = 1.2.3) indicates un isocclcs-triungular pattern with one .\xis
of line symmetry. The patterns for [):. J) i and J): ure symmetric with respcct to rotations
of2rr.j/3 (j = 1.2). Group C I represents a completely asymmetric scalene-triangular pattern.

The dome displays a highly-complex bifurcation phenomenon. which has been com­
puted by means of a finite-displacement bifurc.\tion analysis technique (sec Nishino ('f til..
19H4). Here the externul loads arc proportional to u constant loading pattern vector and
magnified by a loading parameter f; the vertical components of nodes I. ~ and 3 of this
pattern vector arc equal to unity and all other components to zero. Figure 3 shows (a)
space and (b) plane views of the equilibrium paths. which display dill'erent aspects of the
sume bifurcation phenomenon. The former shows the relationship umong the loading
parumeterfand x- and t'-directional displacements of the center node 0; the latter displays
the relationship betweenfand the vertical displacement of node O. The symbol (.) denotes
a symmetric simple bifurcation point and CCi.) an asymmetric double. As m.IllY as six
bifureution paths branch at the unstuble asymmetric double hifurcation points u und h.
rcspectively [see Fig. 3(41) for point aJ. From thesc bifurcation paths. further branches
bifurcate at simple bifurcation points c and d.

We may observe that the deformation patterns of the dome on each path remain
symmetric with respect to a subgroup of D,. Although the deformation of the dome
continuously progresses with changes in'/: all deformation patterns of the dome on the
fundamentul path (denoted by the dark continuous line) arc necessarily D,-symmetric.
Likewise. all the putterns on the paths expressed by the long-dashed lines arc [) 'I-symmetric:
those on dotted lines C,-symmctric. Thus. cach path is associatcd with a particular symmctry
expressed by a subgroup of D,. Since D,. DI. and C. are more symmetric in this order. one
can regard this bifurcation bchavior as a process of symmetry breaking [ef. (Ql) in the
Introduction]. At a bifurcation point. the path with higher symmetry can be called the main
path. whereas the others with Icss symmetry. the bifurcation paths.

We may also observe that the symmetry of the paths is closely related to the type of
bifurcation points [cf. (Q2) in the Introduction]. The asymmctric double points a and bare
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Fig. 3. Equilihrium p'lths of the regular-triangular dome (D ,-equivariant). (.1) space view: (I'll plane
vicw.

the points where the D'I-symmetric bifurcation paths (j = 1.2. J) branl:h from the [) \­
symmetril: main path. The symmetric simple points c and d arc where thc CI-symmetric
bifurcation puths (j = 1,2,3) bifurcate from the Dil-symmetric main paths. Group-theoretic
considerations will reveal how the symmetry of a bifurcating path is related 10 the type of
the bifurcation point (to be summarized in Table I in Section 5).

At the double bifurcation point a on the Drsymmetric path. we have computcd six
bifurcation paths Pl •... ' Ph' How can we convince ourselves that they exhaust all bifur­
cation paths branching at this point [cf. (Q3) in the Introduction]? Group-theoretic con­
siderations answer this without numerical computations.

The critical eigenvectors at a. forming a two-dimensional subspace. have the symmetry
of D'I (j = 1.2, J) or C I' We observe that all the six bifurcation paths PI' .... Ph are in the
directions with higher symmetry. i.e. with D'I-symmetry (j == I. 2. 3). Why are such direc­
tions chosen and is this a general phenomenon [cf. (Q4) in the Introduction]? This question
will be answered by group-theoretic analysis (see Proposition 6 in Section 4).
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The paths P, and P,.) are D',-symmetric (j = t. 2. 3). Deformation modes for PI. P J

and P 5 (respectively P~. P~ and Ph) are mutually rotation-symmetric. We only have to
obtain paths P I and P~ in the numerical analysis. whereas the others are known through
geometric symmetry. Note that by virtue of this symmetry the six paths in the space view (a).

degenerate into only two paths in the plane view (b). In the field of structural engineering. it
is customary to employ plane views to describe bifurcation behavior. so that the rotation­
symmetric paths are identified automatically.

We realize that the apparently complex bifurcation behavior of the dome does not
occur randomly but occurs quite systematically: symmetry is the underlying rule which
controls the behavior. The characteristics of the bifurcation paths and points will be
systematically categorized in the following sections by means of a group-theoretic bifur­
cation theory. which can describe the symmetry in a relevant manner.

3. GROUP THEORY FOR BIFURCATION BEHAVIOR

The nonlinear equations of a multi-dimensional system read:

(I)

wherefis a real loading (bifurcation) parameter; ~ represents a nodal displacement vector.
which is an independent variable belonging to an N-dimensional real space X = R"; and
Ii are equilibrium equations denoting a nonlinear continuous mapping from R x R" into
R". We define H in such a manner that the eigenvalues of the Jacobian (tangent-stiffness)
matrix J of If arc all positive at (/:x) = (0.0). This means that the system is originally
(suocritieally) in a staole state.

The geometric symmetryt of the equations /I is lkscrioed oya group (for the necessary
hackground in group theory. sec Miller. IlJ72: Serre. IlJ77; Oinkevich. 1984: Goluoitsky
('( al.. 1988). Let G oe a finite group. and 1'(q) for.tlE (; denote an ,V x N orthogonal matrix
of a linear representation of (j on X. Then group (; is defined to oe the symmetry group of
thc equations /I. if /I arc equi\'ariant (covariant) to G in the scnse that

1'(g)/I</ x) = /1<./: 1'(g).I:). for all gE G. (2)

Equivariance of equations to a group indicates that they arc invariant under thc trans­
formation hy all elements of thc group. This cquivariancc is inherited to J:

1'(9)J(/:x) = ](J: 1'(y)x)T(y). forallgEG.

In particular. if x is invariant under G. i.c. 1'(g)x = x for allqE G. then

T(y)J(J:c'\) = J(j:.~)1'(g). forallYEG.

The Lyapunov-Schmidt decomposition (Saltinger, 1979; Golubitsky and Schaeffer,
1985: Goluoitsky ('( al.. (9Sl:i) reduces the original equations to a fewer number of bifur­
cation equation(s) in the kernel space of J. spanned by the critical eigellVector(s) of J. as

where

h(/, I.~) = O. (3)

and M is the dimension of the kernel space (,\Of ~ N). '." is an M-dimensional real inde­
pendent variable vector. and (. ) r is the transpose of a vector. Since the original equations

t It should be: understood that the group G is not necessarily purely "geometric" but is the intersection of
the geometric and the material symmetry of the system. as well as the symmetry of paramc:tric load.



11 are elluivariant to G. the bifurcation equations can be chost:n to be equivariant to G.
that is.

t(g)/!(fw) = h(ft(,£/)Il'). forall,£/EG. (4)

where t(,£/) is an .\1 x .\1 matrix denoting the subrepresentation of T(.l/) on R \1.

The type of elluilibrium points is to be determined al:cording to the rank deficiency AI
of J as below:

• ordinary point: if M = O.
• simple criticil point: if M = I.
• douhle critil:al point: if M = 2. and so on.

We further divide the douhle point into:

• group-theoretic: if the kernel of J is G-irreducible.
• parametril:: if it is G-reducihle.

whne "{i-irredul:ihle" means that there exist no non-/enl proper (;-invariant suhspal:es
of the kernel of J (G(llubitsky ct a/.. IlJS8). In this paper. we shall he mainly interested in
group-tlll:oretil: douhle points. which appear generically in strul:tural analysis. and do not
deal with parametril: douhle points. whidl are rare.

In llnler to desl:rihe systems with regular-polygonal symmetry the elluations 11 are
hereafter assumedi" to he equivariant to ,the dihedral group D" of degree fl. This group;.
representing the symmetry or a regular n-gon. is dclined as

IJ" =- :c. r". ' , ,.1';; I. ,I. ,l'r" ..... sr;; I: = : r~ ..Ir~ Ik = o. I. .... n - I }.

with r;: =- ,1'.': (.11',,): = c. The element (' l:orresponds to the identity transrllrtnation. r/,
U = I..... n - I) to the l:ounter-dlKk wise rotation around the Z-axis at an angle or 2rr.j/1I
and ,I' to the rclkl:tion with respect to the -rZ-plane.

Subgroups or IJ" l:llnsist or dihedral and eydil: groups whllse llegree 111 divides II; i.e.
the r;lI11ily or the subgroups or IJ" is given by

where

:IJ;"lj = I. ... . 11/111; 111 divides II: and :('",11// divides II:.

D:" = 1"~""'.,I'r:' I """'Ik = 0, I ..... 111-1: ;

c, = ;";;""'Ik = O. I., ... 111-1:,

(5)

Note that D,~, = D",. ('I = :C:.
These suhgroups l:ategorize derormatilln patterns or regular polygons. Cydil: groups

c." denote rotation-symmetric patterns: the subsnipt 111 denotes the numher or rotation
symmetries. and the group C, represcnts completely asymmetril: pattcrns. Dihedral groups
n;" indil:ate line-symmetril: patterns; and the subsl:ript 111 n:presents thc number of axis of
line symmetry.

The number of elemcnts or a (sub)group. termed the order. expresses the level of
symll1etry. The index. \\ihicll is the ratio or the order or a group to that of a subgroup.
stands for the dillcrenl:c or the level or symmetry between these groups. For example. the
order of the group /)m is 2111. denoted as 1/)",1 = 2111: the index or the suhgroup /)m in the
group /)" is

t For sY'ICl11s with axisyl11l11clry (hcing c4uivariant to Ihc continuous group {), ). lhcrc appcars a group­
thcord'c douhlc poinl wilh D•.symmclry, It is well known that lhc resulling hifurcaling hral1ches from Ihis point
1'lrl11 ,I shcet. which is ohlaincd merely by rotating a rcprcsentative hifurcatil1g hranch, In this context. our study
could also he applicahk 10 thc sccondary hifurcation slrudurc of a {), -sYI11I11clnc' syslcm,

ZIn thc Sd1<>cntlics mllation this group is d.:nolcd as e",. wher.:;,s {J" mcal1s allot her (isomorphi.:) group
ill whi.:h .v rcprcscnls Ih.: half-rotation around the X';lXis, Thcy arc isomorphit: ;IS ahstract groups hut arc
distin~u"hcdas subgroups of all isomctrics,
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4. BIFURCATION BEHAVIOR OF D.- AND C.-SYM~1ETRIC PATHS

In order to categorize bifurcation paths and points of D"-equivariant systems. we need
to introduce the standard (isotypic) decomposition of the real space X = R'" with respect
to D" (see. e.g.. Serre. 1977):

__ {X"+ $',\""_ $.\"", Z+ $X", z- $($Z :,1 X Ic )' for n even.

,.\ - X"+ $X" $($1"=-111 zXd. for n odd.
(6)

where XH • X"_. X" ~+. X"z- and XIc are mutually orthogonal subspaces of X: k is an
integer satisfying 1 ~ k < n/2 : and the symbol $ expresses the direct sum. Each subspace
corresponds to an irreducible representation: X..... X"_. X" ~+ and X", z- to the irreducible
representations of degree one. and X:" (I ~ k < n/2) to those of degree two. In particular.
X"+ corresponds to the unit representation. Each space is an invariant set under the group
action G: for example. T(g)XIc £; XIc for all elements 9 of D".

As shown in Fujii el al. (1982). a critical eigenvector at a simple critical point belongs
to either the space X"+. X,,_. X"i~+ or X"~_. On the other hand. two eigenvectors at a
group-theoretic double point belong to the subspace XIc for some k.

Each subspace X' of X is associated with a subgroup .q[X') of D" expressing the
symmetry of the subspace. i.e.

y[X') = (ll E D"I TClJ).Y = x. for all .~ EX' J-.

We have

.lI[X".) = D,,; .lJ[X" ) = C: ,lJ[X",1.) = D,,(~:

.tJ[X,,~ 1= D;z and ,lJ[Xd = e",.

where m is the greatest common divisor of" and k. The number m is an integer inherent
to each double point.

Likewise. the standard decomposition of the real vector space X with respect to c" reads:

for 11 even.

for 1/ odJ.
(7)

where .f". ,.f",! and i k arc mutually orthogonal subspaces of X. er" and ,.Y"/! correspond to
the irreducible representations of degree one and ,.flc to those of degree two.) A critical
eigenvector at a simple critical point belongs to either .Y" or .Y" z. the symmetry of which is
given by

A pair of critical eigenvectors at a group-theoretic double point both belong to ,.flco which
is la bded by

where. as before. m is the greatest common divisor of 11 and k.

Simple critical poims
According to the standard decomposition (6) for D". a critical eigenvector for a simple

critical point is invariant under either
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where aD" :- and aD; :-symmetric eigenvector arise only if n is even.
Similarly from eqn (7) for c.. a critical eigenvector for a simple critical point IS

invariant under either

where a C. :-symmetric eigenvector arises only if n is even.
In view of the symmetry pattern of its critical eigenvector. a simple critical point on a

Dn - (respectively C.-)symmetric path can be categorized as below.

(I) If the eigenvector is Dn- (respectively C,,-)symmetric. the point is generically a limit
point of loading parameter f

(2) Ifit is not Dn- (respectively Cn-)symmetric. the point is a simple bifurcation point.

At a simple bifurcation point. two paths branch in the positive and the negative
directions of its critical eigenvector. The subgroup that labels the critical eigenvector also
labels the symmetry patterns of these paths. The subgroup in this manner corresponds one­
to-one to the type of paths.

It follows from eqn (2) that if ~ is a solution for fi(f~) = Q. then T(g)~ also satisfies
H = O. that is.

IjJf, T(,q).,!) = Q. for allq E G. (X)

Hmce for a simple bifurcation point. if U: x) is a set of solutions for a hifurcation path.
that for the other path can be known as (f, T(s)x) for a Co-symmetric hifun:ation path and
U: T( r,,)"') for a (>" :- or f),; :-syrnmetric path. The difference hetween the symmctry patterns
of the two paths depend only on the location of the ohserver. We hel1l:eforth identify such
physically equivalent paths and call them an if/{/cpcncl('f{t hifurcation path. Then only one
independent path exists at a simple hifurcation point.

We ddine a bifun:ation point to be symmetric if two paths branching in a direction
and its opposite dircction wrrespond to the same independent path. Then a simple hifur­
cation point is necessarily symmctric.

Group-thcoretic clouh/e hilurcution poi1lts
Consider a group-theoretic double point of a D,,- or C,,-equivariant system. and denote

by C" the symmetry group assoei'lted with the critical eigenvectors at that point. It should
be emphasized in the case of a D,,-equivariant system that there exist a tinite numbt:r of
critical eigenvectors with symmetry higher than C",. i.e. those which are D;,,-symmetric for
some j = I..... 111m; these eigenvectors turn out to give the directions of bifurcating
branches.

Let e l and c: be two orthonormal real eigenvectors in the kernel space at the group­
theoretic double point. In addition. we can choose el to be invariant under f),~, for a D,,­
(equivariant) system. Then an .Irbitrary eigenvector e* in this suhspaee is expressed as

With the usc of a complex variable == 11'1 +ill':. which indicates the direction of a hifur­
cation path in the complex plane. this equation yields

(9)

where i denotes the imaginary unit. and (. ) the complex conjugate of the relevant variable.
Let == r' exp (if/). Then we see for a D,,-system that the eigenvector e* is D;,,-syrnmetric
(j = I. .... 1I/m) for 2nlm angles
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( 10)

The two-dimensional kernel space can be identified with the space of variables: and
:. It is emphasized that not all of these eigenvectors. in reality. specify the directions of
bifurcation paths. but (:.:) should satisfy two-dimensional bifurcation equations [M = 2
in eqn (31].

h,(:.:) =0. i= 1.2. ( II)

Whereas the bifurcation behavior for Do- and c.-systems is investigated in Appendix B
from bifurcation eqns (II) by imposing the condition of group symmetry (4). the major
lindings of this investigation are summarized below. It is interesting that the existence of a
potential function for the equilibrium eqns (I) [or. the reciprocity of the system (I)] plays
a substantial role for the existence of bifurcation paths of a c.-system. Propositions 2-5
apply both to a D,,-system and a c.-system.

Propositioll I
( I) For a D,,-system. bifurcation paths always exist irrespective of the presence ofa potential
function. The D,,-symmctry implies that the potential exists in an asymptotic sense in the
vicinity of the double point.
(2) For a C.-system. hifurcation paths exist ifit has a potential function. (The presence of
(',,-symmetry alone cannot assure the existence of bifurcation paths.)

Ilcre and henceforth. a C,-system is assumed to have a potential function so as to insure
the existence (If bifurcation paths.

I'n'IIl'.l'itiO/l 2
The numher of hifun;ation paths is 211/11I. being twice the index II/III. According to Appendix
B. we can ddine these 2n/m bifurcation paths as:

1', : path hranching toward 0 = ct., +{I. j = 1, .... 211/111. ( 12)

when.: II is non-zero for a c.-system but vanishes for a D,,-system. Then the path branching
in the opposite direction of 1', is expressed as 1', HI"'.

Propositio/l 3
The 2nlm bifurcation paths P,U = I, ...• 2n/m) arc divided into two independent bifurcation
phenomena according to the parity ofj, irrespective of degree n and index n/m. Every other
path in the O-din:ction, therefore. is associated with the same phenomenon.

Propositioll 4
( I) The point is symmetric when the index II/III is eVl.:n and asymmetric when odd.
(2) When the index is odd. a pair of paths 1') and 1', .,,"'. branching in opposite directions.
represent two independent physical phenomena. respectively.
(3) Whl.:n thl.: index is I.:ven. the p,tir of paths corrl.:spond to a physically equivalent phl.:nom­
enon.

PropositiOIl 5
(I) For II/Ill = 3. the loading parameter f decreases toward one independent path but
increases toward thl.: other. Roth branching paths and the bifurcation point arl.: unstable.
(2) For II/Ill = 4. therl.: are three possibilities for the increase or decrease of the loading
paraml.:ter I toward the two independent paths. At most one of the independent paths is
stable.
(3) For II/III ~ 5. f increases or decreases at the same time toward the two independent
paths. In the former case. one of the paths is stable and the other unstable; the bifurcation
point is stable. In the latter case. both paths and the point are unstable.



K. IKWA I!( 1.11.

o <De-
Y-M T....

In_5'

axis of line symmetry

Fig. 4. Three types of a\es of line symmetry

See Fig. BI in Appendix B for details of this proposition for a D,,-system.

Proposition 6
(I) For a D,,-system. it is only in the directions of D~,-symmetric eigenvectors
(j = I..... nlm) that bifurcation paths exist.
(~) For a C-system. bifurcation paths exist toward C,-symmetric eigenvectors.

For a D"-system. the bifurcation paths always have line-symmetric patterns 0:"
(j = I..... film). with higher symmetry than the symmetry C, of the whole kernel space.
Symmetry is maximized along the paths. just as maximum or minimum principles govern
various kinds of physical phenomena. Such maximization of symmetry does not occur for
a C,,-system.

Propositiofl 7
For a D..-system with fI;m even. D:.. -symrnetril.: (j ~ I..... film) hifureation paths are further
I.:ategoril.ed into two independent physil.:al phenomena al.:l.:onling to the parity (1).

This categoril.ation arises from the 10l.:ation of the axis of line symmetry. Figure 4
shows three types of axis for an /I-gon: an axis of V V type I.:onnel.:ting two opposite
vertices. that of M M type interseding two opposite middle points. and that of V M type
connecting a vertex and a middle point. Subgroups IJ:., of IJ.. with odd degree fI possess the
axis of V M type only. Suhgroups D:.. of f)" with even degree fI and odd index film have
hoth the axis of V V and M M type. The axes for D,;,' (respectively D,;,' I) with even fI,lm

arc all of V·V (respedively MM) type. or all of M ~M (respectively V-V) type.

PO.l'.I'ihle direct hro/lc!U's
Generkally possible bifurcation points on a D..- and C-symmetric paths are either a

simple critical point or a group-theoretic double one. We otrer in Table I a complete
categorization of these points and their bifurcating branches.

Table I(a). Direcl branches "I' D.-symmetric paths.

Symmetry of Type uf Index Type of bifurc'ltiun puints
bifurcation paths n n/m Multiplicity Symmetry

lJ"IJ' [)~/1' or e" Even 2 Simple Symnwtric

lJ1... (j = I.· .. ,n/m) Even/Orld Odd Doubl.~ Asymn...tric
D~~- a.nd U;~ () - I.···. 7I/1m) Even Ev.,n Duu"l" Syrnult-tric

TTL di ",idt~S '1 a.nd satisfitOS T11 < HI'!.

Table I(h). Dir~'Ct branches of c..symmetric paths.

Symmetry of Type of Index Typ" of I.>ifurcation points
hifurcation pi\ths n nlm Multiplicity Symm"try

C"IJ Even 2 Simple Symmetric

C'," Even/Odd Odd Double Asymmetric
Even Even Douhle Symmetric

lit divides" and satisfies m < n/!
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The parity of n dett.:rrnines the variety of symmetry patterns of bifurcation paths. which
are labekd by subgroups of Dn or Cn • For a Dn-symmetric main path. in fact. the bifurcation
paths are either c.- or D:n-symmetric (j = I. .... n m) for n odd. and either c.-. Dn ~-. D; ~'.

D:n - (j= I. .... nm). D,~'-'- (j= 1.. ... n2m) or D~'-symmetric (j= 1. .... n2J1l) for 11

even. The c.-. Dn ~-. and D; ~-symmetric paths branch at symmetric simpk bifurcation
points: D ',.,. D ~' 1 and D ,;,'-symmetric ones at group-theoretic double points.

It is to be noted that c.,,-symmetric paths with m < 11 cannot branch directly from D,,­
symmetric paths so that not all subgroups of Dn arc feasible as the symmetry group of
direct branches of D". The direct branches have line-symmetric bifurcation patterns. except
for c.-symmetric ones bram:hing at a simpk point.

For a c.-symmetric path. the bifurcation paths are c.,,-symmetric with fII < fl. The
Cn ~-symmetric path branches at a symmetric simple bifurcation point for fl even. and the
c.,,-symmetric one with fII < 11;'2 at a group-theoretic double point.

Iml'll'JIll'1IIUliOfl i1l flufllericul u1Ialysis
Based on the results presented in the pn:vious subsections. the following procedure is

suggested for the numerical analysis of a D,,- (respectively C,,-) equivariant bifurcation
system.

(I) Obtain a Dn- (rcspectively Cn-)cquivariant path. At the saine timc. critiGII points
on thc path and critical eigcnvectors of the points are obtained through the eigenvalue
analysis of the tangcnt-stilrness matrix. (From an engineering standpoint. one often has to
obtain only the Iirst critical point.)

('2) Determine the type ()f points with rercrence to Table I by investigating the rank
deficiency of the matrix and thc symmctry pattern of the critic.1I eigelm~ctors.

(3) Obtain an independent bifurcation path at a simple bifun;ation point and two
independent paths at a group-tIH:oretic double point.

The solution set U:.\) of a path branching at a simpk bifurcation point is to be found
in the direction of the critical eigenvector. whereas that for the uther path can be known
automatic,lIly as U: 1"(g).\) for some.l/E(i.

For a double point on a D,,-symmetric path. it may be ditlicult to determine the isotypie
component .\'4 to which the two critical eigenvectors belung. Instead of this. the symmetry
group g[Xd of .\'4 is to be obtained to determine the index IIjlll. If the index is odd. the
bifurcation point is asymmetric. and hence two independent bifurcation paths are to be
found in the positive and the negative directions of a D:,,-symmetric eigenvector for some
j. If it is even. the bifurcation point is symmetric. and two independent paths can be fuund
in the directions of D,;,' 1- and of D,;,'-symmetric eigenvectors for somej.

For a double point on a ("..-symmetric path. the directions of two independent paths
cannot be known through the symmetry pattern of the critical eigenvectors. These paths.
therefore. must be found on a trial basis unless bifurcation equations are derived at a
cunsiderable cos!.

5. HIFlJRCATION fIIERARCHY

Direct bifurcation paths of D,,- and Cn-symmetric paths have been identified in the
previous section. These bifurcation paths can undergo further progressive symmetry-break­
ing bifurcation until reaching the completely ,Isymmetric paltern C,. Repeated bifurcations
make up a hierarchy among bifurcation paths. Since the symmetry group of a bifurcation
path is a subgroup of the group of the main path. we may associate a chain of nested
subgroups of D" with a process of repeated bifurcation. Sub-branches of the paths labeled
by Dt" (j = I.... . 1I/m) or c." can be analyzed by the recursive use ofTabk I. In the analysis
of bifurcation hierarchy. the procedure presented in the previous section must be employed
repeatedly.
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n·6

~: bIfurcatton process that can be bypAssed
----: blrurcatlon process that cannot be bypassed

for e,o;amplc. Fig. 5 shows the hierarchies for /) 10 IJ~ and f)t,. Bifurcation progresses
in the arrowcd din:ctions. During this process, thc solid arrows can bc hypassed but not
the dotted arrows. A hifun:~ltion PWl:CSS /) ~ .... IJ ~ ..... f) :' made up of only solid arrows,
dCllOtes lhat a/) I-symmetric path can bram:h directly from a /)~-sYl11metric one, bypassing
a f):-syrnmetril: one. By contrast, /)4-- .... C~ .... C~ shows that a Crsymmctric path can
branch from a D.\-sYlmnctrk ont: and a C~-sYlllmetrit: one cannot. sinct: the dashed arrow
llWy not be bypassed. A similar diagram has ht:en (kviscd by Dellnitz and Werner (19IN).

We may identify two major hieran:hks: a hierarchy among line-symmetric paths Dn

and D:" U:= I, ... ,n/m} and that among rotation-symmetric oncs c" and em' All line­
symmetric paths arc connected by solid arrows, and so arc all rotation-symmetric ones. A
line-symmetric path and a rotation-symmetric path with the same dcgn:e, in contrast. arc
connected by a dashed arrow.

The c" ~- and the C,-symmetric bifurcation paths can arise only as a consequcncc of
repeated symmetry-breaking bifurcation: a c" ~-symmctrjc path. for example, can branch
only from either a C-, D" 2- or D,; !-symmetric path and not directly from a Dn-symmetric
path. It may be noted, however, that each subgroup of /)" given in eqn (5) is potentially
reachabk as a bifurcation path type although its actual existence in a particular bifurcation
behavior depends on the numerical properties of the problem in question.

b. NUMERICAL EXAMPLES

The bifurcation bcha \lior of the clastic truss domes of Fig. I, all subjected to symmetric
IOildings, is described here by means of the group-theoretic method. All members of these
domes have the same material and sectional properties, thus realizing symmetric stiffness
distributions.

A truss dome is equivariant to a group if its geometrical configuration, stiffness
distribution and loading pattern arc .111 preserved by the transformiltion by each element
of the group. In the discussion of equivariancc of domes. their detailed aspects. such as
heights. raJii and number of degrees of fn:edoll1. arc immaterial. Instead of these. line and
rotation symmetries playa primary role. Hence the regul:tr-triangular dome of Fig. I(a),
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Table :!. Branches of D.-equivariant systems.

Symmetry of Symmetry of Index Type of bifurcation points
main paths bifurcation paths "1m Multiplicity Symmetry

D3 , D~ or Co 2 Simple Symmetric

Do ~ 3 Double Asymmetric
Dil -' and D? 6 Double Symmetric

D) CJ 2 Simple Symmetric
D-l- 1 Double Asymmetric1

D- CJ 2 Simple SymmetricJ

Dil 3 Double Asymmetric
C6 CJ 2 Simple Symmetric

C1 1 Double Asymmetric

~ 0i l
- , Dil . or C1 2 Simple Symmetric

CJ C1 1 Double Asymmetric
0il

- , otl . or C1 C1 2 Simple Symmetric

} =1:2.1
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the regular-hexagonal dome of Fig. I (b) and the rotation-symmetric dome of Fig. I (c) arc
equivariant to D,. D" and C~. respectively. Table 2 shows a categorization of bifurcation
paths and points of D~-equivariantsystems obtained from Table I. Bifurcation rules for
[), and C,. which arc subgroups of D~. can be seen in a part of those for Df • in Table 2.

D ,-c'c/llil'uriul// (/IIII/C

The bifurcalion behavior of the D I-equivariant truss dome. which has been introduced
in Section 2. is described here by means of the group-theoretic bifurcation theory presented
in the previous sections.

The critical eigenveclors allhe unstable double bifurcalion point a on the D,-symmetric
palh arc labeled by either f)'1 (j = 1.2.3) or C 1 • The index of f)11 in D, is IIJII/ID/II = 3
(j = I. 2. 3). and its parity is odd. Al.:cording to Propositions 2. 4. 5 and 6. this is an
asymmdril.: point with six f)/t-symmetril.: paths PI and PI' I (j = I. 2.3). as we have already
seen in Fig. 3(a). The paths PI. PI and 1\ (n:spectively P2• P4 and P/» correspond to an
illllependeni path. in agreemenl with Proposition 4.

The bifurl.:ation points c and d. where CI-symmetril.: paths branch from the DII ­

symmetric (j = 1.2.3) paths, arc simple and symmetric points. An independent path
branl.:hes at these simple points, whereas two independent paths branch at double points
a and b, in uccordance with Proposition 3.

All these bifurcation phenomena obey the rules in Table 2 and follow the hierarchy in
Fig. 5. The C ,-symmetric paths. which ure theoreticully feasible, arc absent in these equi­
librium puths. The tasks involved in linding bifurcution puths. especially at double points,
have been redul.:ed greatly owing to the prol.:edure for obtaining bifurcation paths presented
in the previous section.

D,,-cc/llil'uriul// (/IIII/C

The bifurcation patterns of the D,,-equivariant spherical diamond shell of Fig. I (b) are
expressed by the subgroups of D,,; namely. D., D I, D~. D/~ (j = 1,2.3). D ;1- t (j = 1.2.3).
Di' (j = 1.2.3). C•• C J • C 2 and Ct. Figure 6 shows these patterns in a plane view. The
nodes with the same vertical and radial displacements arc denoted by the same symbol.
such as (.).(0)•....(0). The nodes on the axis of line symmetry do not rotate but stay
on the axis. The nodes elsewhere rotale in such a manner that they satisl"y the required line
and the rotation symmetries.

We computed equilibrium paths for the dome under D/>-symmetric vertical loadings
applied in such a manner that the vertical component of the loading pattern vector is equal
to 0.5 for the crown node and to unity for other free nodes. Figure 7 shows a schematic
view of these paths. The numbers at the bifurcation points stand for the index. For example.
the index is equal to three for asymmetric double points c and f, to six for a symmetric double
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Fig. 1<. Equiliorium paths for the S<:hwedlcr dOl1le (C.-equivariantl.

point b. and to two for symmetric simple bifurcation points a. d and e. An independent path
branches at simple points and two independent ones do at double points; the bifurcation
points are symmetric for even indices and asymmetric for odd ones. All these bifurcation
phenomena obey the rules in Table 2 and those propositions for double points. In addition.
all subgroups or [Jr, are observed as the labels for the symmetry of paths.

C t.-c·c/lli/,ariafll dome
Bifurcation patterns of the Cb-equivariant Schwedler dome or Fig. I(c) ~lre expressed

by the subgroups of C b. i.e. Cb • C" C 2 and C 1• Figure 8 shows solution paths of the dome
computed for symmetric vertical loadings whose vertical components equal 0.5 for the inner
hexagonal nodes and unity for the remaining nodes. From the Ct,symmetric fundamental
path. C ,-symmetric paths branch at a symmetric simpk bifurcation point a. and C~­

symmetric paths branch at an asymmetric double point b with an odd index IClilC21= J.
CI-symmetric paths branch from the C)-symmetric paths at an asymmetric double point c
with an odd index IC)I/ICd = J. Again. those propositions have been satisfied.

7. CONCLUStONS

In this paper. we have organized and developed the results of group-theoretic bifur­
cation theory and of a heuristic case study to present a method to describe bifurcation
hierarchy of symmetric (structural) systems equivariant to D" or C". With the aid of
bifurcation equations. we have noted that the nature of group-theoretic double bifurcation
points depends entirely on a single variable. namely the index. expressing the degradation
of symmetry at the points. In addition. it is remarked that the bifurcation paths branch at
a group-theoretic double point on a C,,-equivariant system if it has a potential function.

With the use of this method. highly complex bifurcation phenomena of D,,- and C­
equivariant systems can be understood as a hierarchy of symmetry-breaking bifurcation. A
priori knowledge of bifurcation hierarchy permits one to analyze the bifurcation phenomena
in a systematic manner. In particular. the complete set of bifurcation paths branching at
group-theoretic double points can be arrived at with reduced work.
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APPENDIX A: A REMARK ON RIFURCATION EQUATIONS OF GRAD[ENT SYSTEMS

A system of nonlinear cqns (1) is callcd a gradient system if

!i = [H,) = grad U (AI)

for somc scalar (potential) function U. Notc that eqns (AI) imply the reciprocity ofeqns (I), i.e. the symmetry
of the Jacobian matrilt of eqns (1) :

(A2)

Since thc reciprocity (A2) implies eqns (A I) under some regularity conditions by the Poincare lemma, the concepts
of "gradient systems" and "reciprocal systems" arc in fact equivalent.

The observation here is the following theorem.

rh"or"", A. If ,I"'lull "(111.\ (I) ur" II qradienl "y.'le",• .m Uf!' Ih.. r..duet'd hi/urmtiot! "qn,l' (3) (hy tll/ approl'ritllt,
clwi",' 0/ coofdil/tltes). Or in tlth", ...""i,. Ihe reduced hi/llrcatim, (''Ins (3) in/wril the r"ciprocity ,{ Ih,· filII (,t11l.\
(1).

This principle is independent of. and may be compared to, the well-known important principle (4) that the
reduced bifurcation equations inherit the group symmetry of the full equations. Thus we have two independent
general properties which ;Ire preserved under the Lyapunov-Schmidt procedure. Note also that it is straightforward
to extend this observation to infinite-dimensional case. using the usual framework of a Fredholm operator on a
lIilbert space.

The proof of the above theorem is not difficult. as follows. By an appropriate change of the coordinates. we
may assume. using the notation of Scction 3. that x = (I", I') (where we R ".I'e RV

' ") and I' can be eltpresscd as
I' = I'(i ~~) by the implicit function theorem and th',itthc'functions hX],~) oCeqns (3) are given by

Then the Jacobian matrilt l' = (,'hNw,) for the reduced equations is given by
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J' = J"-J,,J~~'J~I
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in tenns of the submatricc:s J,,(i.) = I. 2) of the Jacobian matrix J of the full eqns (\ l. i.e. J = (J"li.) = I. 2) and
J" = ({~H"i' ....,li.)= I. .... M). J,~ = (i'H,/i' ....,Ii = 1. .... ;\.-1;) = ,\1+ I. .... ,v). etc. The symm.:try of J implies
that of 1'. This completes the proof.

Consider a double critical point (i.e. .\1 = 2). B~ choosing (:. .:) in eqn (9) as the coordinates of the kernel
space. we put

where!is an increment offfrom its value at the double point. Let us assume that F can be expanded as

, L

F(J.:. .:) = I I.4,.(!)::":"·
1'-0..,_0

The reciprocity can be expressed in a compact form as follows.

Theorem 8. At a douMe point. the reduced eqns (3) are reciprocal if and only i(i'Fic: is real. This condition is
{'qllim(en/ 10

«(1+ I).-/".,.C/) = (/(+ 1l.4., "U). (I.q = 0.1.2..... (A3)

Note that the above statement is independent of whether the double point is pammetric or group-theoretic.
An important consequence of eqn (A3) is that

A,< I.,(!) is real for p = O. I. 2....•

which plays a key role in the analysis of a double point of a C.-equivariant system; sec Appendix B.

APPENDIX B: GROUP-THEORETIC DOUBLE BIFURCATION POINTS OF 0.- AND C­
SYSTEM

(M)

The solutions of the two-dimensional bifurcalion eqns (II) of a group-lheorclic dnuble point of a 0 ..­
equivarianl system have been oblained in mathematics (s~'C. e.g.. Satlinger. 1979. 19K1I; Golubitsky c't 0(.• 19XK).
In order 10 make these solutions 'Iccessible for structural engineers. they arc presented here by means ofelementary
calculations.

We consider a double critical point (i.e. M = 2) and identify the kernel spal:e wilh the space of (:. .:) through
e'll1 ('I). i.e. : = II', + ill", . .: = II', - ill",. If we pUI

where f is an increment off from its v.L1ue at the double point (f = 0 at lhe point), we sec that e'lns (II) arc
equivalent to a complex equation

since II, and h, arc real. Suppose we can expand F as

F(j~:.':) = L L AI"/(!):!':"'
I' - 0 II-I)

(Ill)

(1l2)

(As is usual wilh local bifurcation analysis. only finitely many terms arc important.) Assuming that
(j~ II",.IJ',) = (0.0.0) corresponds to the double critical point, we have

All.(O) = A,o(O) = A.,(O) = O. (83)

As we will s~'C below. AI"/ must follow cert;,in conditions if the syslem has a potenti;,1 funl:tion (as in Appendix
A) or a D.- (or C.-)symmetry (as shown below).

D.·{·quil'llri(Jn/ .v.r.vli·m
The D.·equivariance (4) at a group-theoretic point is expressed as follows. Let Cm be lhe group of symmetry

of the kernel space of the double point. By the choice of ~" D. acts on (:.:) via

where

w = exp (i2nmln).

Note that nlm ~ 3. Then the D.-equivariance (4) is equivalenlto
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From ClIn (85) we see that

Substitution ofeqn !B~l in {B4) yields

K. IKEDA, et al.

wF(]:.:1 = FI]w:.w:).

FI.l.;.:) = FU~:.;)·

AN(j1 is real for p. q = O. I.....

(B4)

(B5)

(B61

. ,
L L A".,(/I:"="[e,\P :i~n:( p-q-I)minl -11= O.

1'-0 if- Il

~!l:nee.

Aroth = 0 unless p-q I = kn', k = O. ± I. ±2.. ... (B7)

where n' '" n m,
Equations (Bfl) and (87) are the conditions for D.-symmetry, Under condition (87), egn (82) is rewritten as

f -Sf'

F(/'.:) - ,,~ (/') ••+1::>1+"" [~ {}') •• +l .. h:o+" (/r. •• :o-I·"I (BII)
...... - - ~ 'q ... I·1." .. t- i.....J '<J+I",It:'t.'1" .... 1/.4-1"'''11' ,'J... .

./= II Ic-,;, 14- (}

We define the leading p~\rt of this equation as:

F"U~::.:) '" L '{"r..l.l):o"="+A". ,UI:" '.
I) ..... II .... 'Ii: - I

IR9)

A key ohservatilln here is th>lt the leading ['>1ft in eqn (B"l satisfies the condition of reciprocity c'ln (A3).
This sl1\1wS that O,-symmetry implies the existence of a potential functioll in the asymphltic sense. Put

1i,1"'" 10':1"" .IIIF,,!.':=.:)),
1i:(II· I .II':) ." .1(/-·,,(l=.:)).

where Ii(' I and ,II ( • ) mean lhe real ami imagin,lry parls of a complell numhcr. Then we have

11,(11',. II':) ~ ii,llI'"11':) '" ,1V!,1I1',.

":(11'" "':) ~ ii,(Ii', ,11':) = i'U/,11\':

fnr SOIll<: ";asymploti<: pOI<:llti:"" function U(II",. II'J, This fun<.:lioll is ev;duated III

L
u ... </ ... I'f 2

In polar coordinates == " Clip (ill), thi~ function bC~'omcs

[·(W,.II·,) '" DI" II) '" I
II "" <j'" ~ !

A".,.(]l ',.. ", "
". ·"'-···l~r-· '+ A", - ,( / V' cos (1ll/)111

I -(q+ ) ,.

./, /)
- f' (O)}',: () + " ' .' 1.•( ,".' II +' . Un.r" ,·os (11'0) !II ,
-: 10 ,- i." ~«(I+I) "'''.'-' ') ~ ,

1.,,;"1 ...... 1- I

(BIO)

hy elln fUJ), where :1",,, Jenoles the derivative of A'0 with fcspeclto/
The eljuilihriulll cqn (HI) has the trivial solution: '" O. cmresponding to the D.-symmetric main path. Their

non-tnnal sollillon is dclefl1Ul1cd from F,; = O. PUllIng

l'U: '.11) = FU:' exp (WI,' exp ( -ill))!, Clip (ill)

;1I1l1 llsing polar cllordinat<:s and clJn (R7). we h;\ve

, , ,

.J/d', '" L ,.1".1..</),:.+ L L (A•• , ••••U'),:.,,,·+A•.•. , ... (/l'!'· ""')cos(kn'O),
f/ .... 11 • "'" I q_O

.1(F") '" I I !../",' ....!.i,,.:., .. ··-A•.•. , ... (l),.:'.,·" .. ··Jsin(k!((}).
~ 1:W I 'I'" tI

Thc l1oll-lnvt;lI SnlUllllll is 10 satisfy equation .lIP) '" 0 and h<:nee sill (1/'//) 0, Therefore.

(Bl1)
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arc necessary for thc e'istcm:c of non-trivial solutions. Thcse ang!.:s are associatcd with the dir~"\:tions of D:"­
symmetric eigenvectors (j = 1. ... , n m) [see eqn I lOll.

If we put

F,li rJ = FIj:r.1). i = 1.:.

we see thc symmctry anwn!! the paths ffllm eqn I RII). th'lt IS.

(BI2)

/=fl r ) (B13)

in the neighbl1rhood of thc double point (I rl = (0.0). Thercforc the number of blfun:ation paths equals 211 m.
which is twice thc indc, ID"I ID~,I.

The ahove argumcnt [scc cqn I B1211 shows the e,istencc of two distinct sets of bifurcation paths dcnotcd by
f,lr) and I':(r). Hcncc thc 211 til hlfurcation paths arc divided into two physically mdcpcndent paths. Evcry othcr
bifurcation path in thc tI-dircctil.n is associatcd with an indcpcndcnt path.

Wc dCOlllC hy P, thc path hranching in thc dircction 1'1' tI = l,(j = 1..... 211 III). P'lths P:, ,(j = I.... . lIm)

arc dcscnbed hy {,(r) and arc n~' '-symmctnc; paths P" hy {,(rl and arc D';:-symmctric.
A douhlc bifurcatil'n point is symmetric if a pair ,.f paths P, and P, '" .,' which hranch in l.ppositc directions

tI = 1" and 1, + rr. corn:splllld tl' thc same functilll1 f:(i = I or 2); it is 'lSynllnetric othcrwise.
For II til 11l1d. the pair of paths are denoted hy differcnt functions '"~ that the hifurcation point is asymmetric.

Two dilferent palhs (, (r) aOlI f.(r) are Clllmv·v·ted at Ihe bifun:alion point to form a continuous n:.. -symmetric
path (/ = I .... . I1,tII). which is asymmetric with respccl to Ihe main palh. For II til even. Ihe p;,ir of paths arc
symmetric with rv'spcct to thv' main path. allll hence the hifurcation plllnt is symmetnc.

DIfl'ct cail'ulations reVl'allhe foll,ming asvmptotlc forms of t;(r), I = 1,2, when irl is Sln,ill. For II/til = 3.

.-1".(0)
t,lr) ~ (--I)'. r. 1.2.

.-1,,,(0)

Smce (, Ir) and r(r) have "1'1'''Slte signs. (is always redlll:ed toward one illlkpendent I'alh hUI illl;reascs toward
the other. J.'o .. //111 -I. e<ln (1111) yields

t, (r) ~ -- """ (O) f I
..1',,,1 01'

Thc eocllicicnls .-I:, (0) -L .. '" ,(0) detcrminc the merease or decrease "I' r J.'''r II, til ;: 5.

.-1,,(01. _1)'.-1" ....., ,(Ol1"'" '+(}(r""').
{;(r) ~- ..1',,,(0 ) r +,/(r) t-( .. , ",(0) 1. 2,

where .'/(r) = (}(r') is independent of i. Thus I increases or decrcases simultancously for all hifurcation paths
aeeordmg to wh<:ther "'" (11): .·1',,,(0) is ncgative or positive.

Thc stahihty of the hifurcltion point and brand,es arc now considered. I'ulling "to ICW in the asymptotic
potential C in (1110). wc ohtain

j
A",«I)Cosotl)r' 3 if II til 70 3.

Clr.II}::::: 1,~:,IO'-"'",(ll)eosl-lIl)lr' -I ifll,tII =-1.

.... ,,(O)r' -I if" til ;:: 5.

in the neighhorhood of r = 0, Remcmber th"t the hifureation point is stable if C(r, tI) is minimi/ed at Ihe
p"int. The p"int is a saddle p"int of C for II til = 3. and therefore is unslable. For 1/111 = -I. it is stahle for
A"(O)±.-I,,,(O) > 0 but otherwise it is unstahle. J.'or II til;' 5, it is stahlc if .-1,,(0) is posilive hut unstahle if
negative.

Next we consider the stahility of hram:hes thwugh Iinc;'rizations. Let j' ~ (.' 11.0"'11', Ii, j = I. 2} be the
(asympl<.tieally syl1l111elri.:1 Ja.:ohian matri, of the redu.:ed equations and re.:all that an equilihrium state is stahle
if j' has two positive ei~en\'alues. and is unstahle if it has at least one negative el~en\'alue. Sin.:e j' is two­
dimenSional. it has two positive eigenvalues if ;Jnd only if hoth

tra.:e (j') > 0 and det (j') > n.

whcre traee (. ) and det ( • ) is the tra.:e and the determinant of a matri~, respe.:tivdy. From eqn (:\ 1) we sec

On the oifurealioll orand, with /I = 1 .. we 001.1111 the foil"" Illg e,~pre""lIls when :r; " 'mall:
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Fig. Bl. Categorization of local behavior at the group-theoretic double bifurcation point for D.;
(al 111m = J; {bl nim = 4; (cl njm ~ 5; s: stable path; u: unstable path.
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ifnm=3.

ifn.m = 4.

ifn.m = 3.

ifn m = 4.
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Note also that ..1',,,(0) < 0 since the trivial solution, = 0 is stable for J< O.
From these calculations. we can see the stability of the double point. Figure BI categorizes the asymptotic

behavior of a non-degenerate group-theoretic double bifurcation point for D•. for which the coefficients A"z(O).
A",(O). A z,(O) ± ..1".(0) and A".• m _, (0) are assumed to be distinct from zero.

For n/m = 3. the bifurcation paths in general are all unstable. For ".", = 4. all branches are unstable if
A zI (0) - A" ,(Ol is negative. If it is positive. the branches Pz, _, are unstable and Pz, are stable for positive A",(0).
and vice versa for negative ..1",(0). For n.'" ~ 5. all branches are unstable if A :,(0) is negative. If it is positive.
the branches P:,_ , are unstable and Pz, are stable for positive A". m _ ,(0). and vice versa for negative A,,.. m- ,(0).

Cn ,equil'll,illlll JI'J/em
F,'r a c..-e,juivariant system. we have eqn (B7) \lOly and not eqn (Bli). Uen~'t: Rt: =.:J is wrillen .IS eqn (Bll) but

with wmple~ Clletlil:ients ..11'.,(/\ [Note that ..l,./l) are real for a Dn,equivariant system due to the relleetion
symmetry (B5).1 Since A." ,.(/) (If = 0.1 .... ) are Cllmplc~ in general in eqn (Bll). the equation tCl=.:) = 0
has nil sllluti.,n. That is. F( l =.:) = 0 has the trivial solution al.,ne.

IIl,wcver, If the system has a p,'tential. the additillnal condition (A4) is satisfied. Then it can be proven by
an e1emcntary argument based on the implicit function thwrem that F(t: =.:') = 0 has bifurcating branches in the
direction of

O=X,+{I. ;=I. .... :!II.m. (BI4)

where 'I, is defined in eqn (Ill) and {I = arg (A "n m _ ,(0», where arg ( • ) is the argument of a complex variable. The
presence of this angle {I is the only difference between n.,systems and c.,systems. though the values of {I cannot
be knllwn through the consideration Ilf symmetry. Unless higher-.,rder terms .Ire refcrred to. the determination
Ill' (I demands a series of preliminary trial-and-ernlr analyses.

Since AM ( lJ can he complex for a C.-system, the results obtaim:d for a 1>.,systcm need sllme mlldilications.
The asymptotic form 01'/:(,) (i = I.:!) ofeqn (flU) is given by

(-I)'!A",(O)1

.-"",(0) ,

I
-, [..1,,(01 +( -I)' 'IA",(O)II"

A,,,(O)

..l ,,(0) ,

"..1'",(0)

if,,'1II = 3,

if",'m = 4,

if"'1II ~ 5.

The stahility of the bifurcating paths with /I = x, + {I is determined from the following expressions:

if".'m = 3.

if",'", = 4,

if "jill = 3,

ifn/III = 4.

if"jlll ~ 5.


