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Abstract—A group-theoretic method for the analysis of bifurcation behavior of regular-polygonal
symmetric structures is described. Possible bifurcation paths and points of these structures are
categorized in terms of dihedral and cyclic groups, which cxpress the symmetry. {n particuliar, we
offer a complete deseription of those double bifurcation points which occur due to group symmetry.
The type, the number, and the stability of bifurcation paths branching at these points are determined
by deriving bifurcation equations, The cxistence of a potential Function plays i substantial role for
the existence of bifurcation paths. As a result of these, all possible bifurcation process cun be known
a priori as @ mitural consequence of bifurcation hicrarchy before actual numernical analysis. An
mnplementation of this method in numerical analysis shows its validity and usubility.

L. INTRODUCTION

Structures with symmetry have played an important role in the history of human archi-
tectures from the Greek or Roman cras. Among modern architectures, we may also find
structures which preserve some symmetry, The reticulated truss domes of Fig. I may serve
as such an example.

Such symmetry, however, can often be broken at the onset of bifurcation buckling
behavior, which is one of the typical collapse types of structures. Naturally, theoretical
study and computer-assisted numerical analysis of this behavior are of most practical
importince.

Such buckling behavior can be interpreted as an instability induced by a singular
tangent-stiffness matrix—lincarized eigenvalue problem—of structural systems. Singular
{critical) points are where one or more eigenvalues of this matrix vanish, and it is at such
points {with some additional conditions) where bifurcation buckling actually takes place.
In fact. from a singular point on a fundamental solution path, secondary (post-buckling)
paths bifurcate, the number of which being in general greater than one.

In view of its practical and theoretical importance, the problem of elastic instability
has been the subject of a number of extensive theoretical studics. For instance, the static
perturbation method is an established meuns of studying clastic buckling, imperfection
sensitivitics, and so on; see, ¢.g., Hutchinson and Koiter (1970) and Thompson and Hunt
(1973). The cigenvaluc-analysis method scems to be an alternative in computer-assisted
numerical buckling analysis ; see, for example, Timoshenko and Gere (1961).

It should be noted that, at the expense of beauty, symmetric structures have much
more complex bifurcation behavior. By “bifurcation behavior™, we mean the number, the
stability. and the symmetry of bifurcating branches. More precisely. multiple eritical points,
where more than one eigenvalue simultaneously vanishes. appear inherently in such struc-
tures due to the presence of symmetry. The essential point here is that such multiplicity
appears in a generic manner. This “genericity™ implies that such singularitics appear with
a change of a single physical parameter (e.g. the loading paramecter).
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Fig. [{a). Regular-triangular truss dome (D -equivariant).
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Fig. 1{c). Schwedler dome (C,-equivariant).



L

Bifurcation hicrarchy of symmetric structures 1353

We classify multiple critical points into two types: parametric and group-theoretic.
Group-theoretic multiple points are those which appear inherently in structures even with
one physical parameter if they have some symmetry. On the other hand. parametric multiple
points are those which appear as a coincidence of a pair of simple critical points. In physical
experiments they are observed only when more than one physical parameter is changed.
and hence are rare (i.e. non-generic) in customary structural analysis.

Accordingly, the critical points which appear in a symmetric structure consist of two
major types, simple critical points and multiple ones due to symmetry. This shows a sharp
contrast with the case of non-symmetric structures. where only simple critical points appear
generically. Buckling and bifurcation at simple points have been extensively studied (sce,
e.g.. Thompson and Hunt. 1973 Sattinger, 1979, 1980 Fujii and Yamaguti, 1980; Hunt,
1986). However. the importance of group-theoretic multiple points can never be ignored in
the case of symmetric structures.

With regard to the static perturbation method. the degeneracy (multiplicity) due to
the group-theoretic symmetry results in annihilating some lower-order derivatives of the
total potential energy function. We should note that this degeneracy has so far been treated
in an ad hoc manner within this method.

The alternative method of bifurcation analysis. i.e. the eigenvalue analysis, finds a
bifurcation path at a multiple point by means of an iterative procedure starting from a
plausible branching direction which is selected on a trial-and-error basis. This method is
more convenient and less costly than the former if it is adequate. Although the critical
eigenvectors at a multiple point form a multi-dimensional space, only a finite number of
these correspond to the directions of bifurcation paths, as Hosono (1976) has noted in an
empirical manner. The crucial ditficulty in this method is that, notwithstanding its merits,
it can never guarantee in principle to yield the complete set of bifurcation paths at a multiple
bifurcation point. In short, the difticulty in numerical analysis mainly comcs from the
inherent group-theoretic degeneracy.

Summing up the preceding arguments, vital questions to be answered scem to be:

(Q1) how the hierarchy of successive bifurcations is described in terms of the group
symmetry of the system?

{Q2) how the symmetry of biturcation paths is determined?

(Q3) how the number of bifurcation puths is determined?

(Q4) how the direction of bifurcation paths is found?

In view of recent developments of group-theoretic bifurcation theory in the field of
non-lincar mathematics, bifurcation structures near singular points, whether simple or
multiple, can be investigated theoretically. In particular, questions as above can be com-
pletely answered a priori if the concept of group symmetry is taken into account in the
theory. A combination of group-theorctic bifurcition theory with the conventional static
perturbation or cigenvilue method appears to give a more comprehensive and simpler way
of describing and tracing bifurcation behavior,

The aim of this paper is, through an extension and reorganization of those results
hitherto developed on group-theoretic double singularity, to make the bifurcation structure
more transparent, and provide the results in a form readily accessible for engineers. Since
they include ¢ priori information on the structure of bifurcations near a multiple point (as
will be shown later), such mathcmatical results scem to serve as a basic tool for engincers
to perform numerical analysis, ¢.g. by the cigenvalue method. Emphasis is placed on dihedral
groups D, i.e. groups of regular polygons, which appear in many structures of practical
importance.

An additional note, which appears to be not fully recognized so far, is given about a
system which is equivariant to a cyclic group C, (namely, a system with rotational n-gon
symmetry, but without reflections) : a C,-equivariant system arises from a structure with
cyclic symmetry or from a secondary bifurcated state of a structure with dihedral symmetry.
Since many structures are in general potential systems, the bifurcation behavior of structural
systems shows some special features. For details, see Appendix A.
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We shall present a complete diagram of bifurcation hierarchy which can appear as D,-
and C,-equivariant systems. This diagram gives complete information about possible types
of successive bifurcations, the number of bifurcating branches, their stability. and so on.

In fact. referring to this hierarchy diagram, we can understand a very complex bifur-
cation behavior of symmetric truss domes. The diagram explains the empirical observation
(cf. Section 6 and also lkeda and Torii. 1986) that a C;-symmetric path can never bifurcate
directly from a D,-symmetric path. It is to be noted that all conclusions drawn here are
applicable to bifurcation phenomena of systems other than truss domes, whenever they
have some dihedral or cyclic symmetry.

The mathematical tools employed in this paper are:

(1) group-theoretic bifurcation theory (see, e.g.. Sattinger, 1979),

(2) application of this theory to D, (Sattinger, 1979. 1983 ; Fujii et /.. 1982 ; Golubitsky
et al., 1988 : Healey, 1985, 1988 : Dellnitz and Werner, 1989),

(3) categorization of group-theoretic double points of D,-equivariant truss dome struc-
tures by means of the index (Ikeda and Torit, 1986).

(4) results of standard (isotypic) decomposition that provide us with information
about the symmetry of eigenfunction (Fujii ¢t af., 1982), and

(5) a remark on a C,-cquivariant system, and especially an existence proof of bifur-
cating branches for potential systems (Krasnosel'skii, 1964 ; Poston and Stewart, 1978).

A few remarks follow. Firstly, concerning “paramctric” multiple points, extensive
studies have been made for systems ol reaction-diffusion equations; sce, ¢.g.. Fujii ¢t al.
(1982) and references therein,

Sccondly, the concept of index, which denotes the difference of the level of symmetry
of the fundamental and biturcated paths, has already been used as a characteristic of
symmetric truss domes by [keda and Torii (1986). Such results will be systematically
summarized and extended in this paper.

The tinal remark s about C-cquivariant systems. For general C,-symmetric systems,
it has been “well™ recognized that secondary paths cannot branch from a group-theoretic
double point (sce, e, Sattinger, 1979). However, bifurcation paths do branch at a group-
theoretic double point for a C,-equivariant structural system that usually has a potential
function. Although this fuct has been known in mathematics (¢.g. Krasnosel'skii, 1964), we
shall offer a brief account on this in view of its importance in structural systems.

2. A SIMPLE EXAMPLE

Betore entering into general settings, we shall provide here a simple exampie of bifur-
cation behavior that will serve to give concerete ideas to the arguments in subsequent sections.
The objective of this section is to identify the problems to be addressed later and to illustrate
the use of group-theorctic terminology.

We consider the clastic regular-triangular truss dome of Fig. 1(a), subjected to a
symmetric loading. All the members ire assumed to have the same material and sectional
properties. This dome is apparently symmetric in geometric configuration, in stiffness
distribution and in loading. The equilibrium ¢quations for this dome remain invariant under
two kinds of geometric transformations, namely the counterclockwise rotation r around
the Z-axis at an angle of 27/3 and the reflection s with respect to X Z-plane. This geometric
invariance is mathematically expressed as the equivariance of the bifurcation problem to a
group, i.c. the dihedral group of degree threet

D= ler.ri s.srosr),
where the clement ¢ stands for the identity transformation, and r’ stands for counter-
clockwise rotation around the Z-axis at an angle of 27//3 (j = 1.2).
+In the Schoenflies notation this group is denoted as C,,. whercas 1, means another (isomorphic) group

in which s represents the hall-rotation around the Y-axis. They are isomorphic as abstract groups but are
distinguished as subgroups ot all isometrices.
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Fig. 2. Plane views of bifurcation patterns of regulur-triangular free nodes of the regular-triangular
dome.

axis of line symmetry

Deformation (bifurcation) patterns of this dome are often less symmetric than D,
but may retain part of its symmetry, which is represented by its invariance under the
transformations in the subgroups of D, i.c.

D.. Ci=lerrl, Dy=lesr '1(j=123. C =¢.

Figure 2 shows plane views of deformation patterns of the regular-trianguolar free nodes 1,
2 and 3 of this dome. Solid -dash lines denote the axis of line symmetry. Group D denotes
a uniform expansion or contraction of the regular triangle, accompanied by a uniform float
or drop. Group C, expresses a rotated-regular-triangular pattern indicating a rotation
about the Z-axis, accompanied also by a uniform expansion or contraction and by a uniform
float or drop. Group D (j = 1,2.3) indicates an isoceles-triangular pattern with one axis
of line symmetry. The patterns for D}, D and D are symmetric with respect to rotations
of 2nj/3 (j = 1.2). Group C, represents a completely asymmetrie scalene-triangular pattern.

The dome displays a highly-complex bifurcation phenomenon, which has been com-
puted by means of a finite-displacement bifurcation analysis technigue (see Nishino ef al..
1984). Here the external loads are proportional to a constant loading pattern vector und
magnified by a loading parameter £ the vertical components of nodes 1, 2 and 3 of this
pattern vector are cqual to unity and all other components to zero. Figure 3 shows (u4)
space and (b) plane views of the equilibrium paths, which display different aspects of the
sume bifurcation phenomenon. The former shows the relationship among the loading
parameter fand Y- and Y-directional displacements of the center node 0 ; the latter displays
the relationship between fand the vertical displucement of node 0. The symbol (@) denotes
a symmetric simple bifurcation point and (A) an asymmetric double. As many as six
bifurcation paths branch at the unstable asymmetric double bifurcation points a and b,
respectively [see Fig. 3(a) for point a}. From these bifurcation paths, further branches
bifurcate at simple bifurcation points ¢ and d.

We may observe that the deformation patterns of the dome on cach path remain
symmetric with respect to a subgroup of D,. Although the deformation of the dome
continuously progresses with changes in f, all deformation patterns of the dome on the
fundamental path (denoted by the dark continuous line) are necessarily 1 -symmetric.
Likewise, all the patterns on the paths expressed by the long-dashed lines are D4 -symmetric
those on dotted lines C,-symmetric. Thus, cach path is associated with a particular symmetry
expressed by a subgroup of D ;. Since D, D) and C, are more symmetric in this order, one
can regard this bifurcation behavior as a process of symmetry breaking [cf. (Q1) in the
Introduction]. At a bifurcation point, the path with higher symmetry can be called the main
path, whereas the others with less symmetry, the bifurcation paths.

We may also observe that the symmetry of the paths is closely related to the type of
bifurcation points [cf. (Q2) in the Introduction]. The asymmetric double points a and b are
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Fig. 3. Equilibrium paths of the regular-triangular dome (D -equivariant), (a) space view ; (b) plane
view.

the points where the D{-symmetric bifurcation paths (/= 1,2,3) branch from the D,
symmetric main path. The symmetric simple points ¢ and d are where the C-symmetric
bifurcation paths (f = 1, 2, 3) bifurcate from the D -symmetric main paths. Group-theoretic
considerations will reveal how the symmetry of a bifurcating path is related to the type of
the bifurcation point {to be summarized in Table | in Section 5).

At the double bifurcation point a on the D-symmetric path, we have computed six
bifurcation paths P, ..., P,. How can we convince ourselves that they exhaust all bifur-
cation paths branching at this point [cf. (Q3) in the Introduction]? Group-theoretic con-
siderations answer this without numerical computations.

The critical eigenvectors at a, forming a two-dimensional subspace, have the symmetry
of D) (j = 1,2,3) or C,. We observe that all the six bifurcation paths P,..... P, are in the
directions with higher symmetry, i.e. with D/-symmetry (j = 1.2, 3). Why are such direc-
tions chosen and is this a general phenomenon [cf. {Q4) in the Introduction]? This question
will be answered by group-theoretic analysis (see Proposition 6 in Section 4}
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The paths P, and P, ; are D/-symmetric (j = 1.2, 3). Deformation modes for P,. P,
and P; (respectively P,. P, and P,) are mutually rotation-symmetric. We only have to
obtain paths P, and P, in the numerical analysis, whereas the others are known through
geometric symmetry. Note that by virtue of this symmetry the six paths in the space view (a).
degenerate into only two paths in the plane view (b). In the field of structural engineering. it
is customary to employ plane views to describe bifurcation behavior, so that the rotation-
svmmetric paths are identified automatically.

We realize that the apparently complex bifurcation behavior of the dome does not
occur randomly but occurs quite systematically : symmetry is the underlying rule which
controls the behavior. The characteristics of the bifurcation paths and points will be
systematically categorized in the following sections by means of a group-theoretic bifur-
cation theory, which can describe the symmetry in a relevant manner.

3. GROUP THEORY FOR BIFURCATION BEHAVIOR

The nonlinear equations of a multi-dimensional system read:

where fis a real loading (bifurcation) parameter ; x represents a nodal displacement vector,
which is an independent variable belonging to an N-dimensional real space X = RY: and
H are equilibrium equations denoting a nonlinear continuous mapping from R x RY into
RY. We define H in such a manner that the eigenvalues of the Jacobian (tangent-stiffness)
matrix J of f are all positive at (f.x) = (0,0). This means that the system is originally
{subcritically) in a stable state.

The geometric symmetryt of the equations £ 1s described by a group (for the necessary
background in group theory, see Miller, 1972 Serre, 1977 : Dinkevich, 1984 ; Golubitsky
et al., 1988). Let G be afinite group, and 7°(g) for g€ G denote an NV x N orthogonal matrix
of a lincar representation of ¢ on XL Then group G s defined to be the symmetry group of
the equations £, £ are equivariant (covariant) to G in the sense that

T H(f.x) = H({[.T(g)x), forallgeG. 2)

Equivariance of equations to a group indicates that they are invariant under the trans-
formation by all elements of the group. This equivariance is inherited to J:

T (LX) =J(. T(x)T(y)., forallged.
In particular, if vis invariant under G ie. T(g)x = v forall ge G, then
T(@Jfox) =J(/.x)T(g), forallyeG.
The Lyapunov-Schmidt decomposition (Sattinger, 1979 Golubitsky and Schaetfer,
1985 . Golubitsky er al., 1988) reduces the original equations to a fewer number of bifur-

cation equation(s) in the kernel space of J, spanned by the critical cigenvector(s) of J, as

h(fow) =0, )
where
h= (... hy)t

and M is the dimension of the kernel space (M < N), w is an M-dimensional real inde-
pendent variable vector, and (+)" is the transpose of a vector. Since the original equations

t It should be understood that the group G is not necessarily purely “geometric™ but is the intersection of
the geometric and the material symmetry of the system, as well as the symmetry of parametric load.

SAS 27-12-F
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H are equivariant to G, the bifurcation equations can be chosen to be equivanant to G.
that is.

Hgh(fiw) = h(f t(g)w). torallgeG, (4

where 1(g) is an M x M matrix denoting the subrepresentation of T(¢) on RY.
The type of equilibrium points is to be determined according to the rank deficiency M
of J as below:

e ordinary point: it M =0,
o simple critical point: if M =1,
e double critical point: if M = 2. and so on.

We further divide the double point into:

e group-theoretic: if the kernel of J 1s G-irreducible.
e parametric: if it is G-reducible,

where G-trreducible”™ means that there exist no non-zero proper G-invariant subspaces
of the kernel of J (Golubitsky et of., 1988). In this paper, we shall be mainly interested in
group-theoretic double points, which appear generically in structural analysis, and do not
deal with parametric double points, which are rare.

In order to describe systems with regular-polygonal symmetry the equations H are
hereafter assumedt to be equivariant to the dihedral group N, ot degree n. This group,
representing the symmetry of a regular n-gon, is defined as

x
D, = leor P T sy = {rf,,‘\‘r,,|/\' =0 101},

with 7 = 5" = (sr,)° = ¢. The clement ¢ corresponds to the identity transformation, r/
(/= 1.....n=1) to the counter-clockwise rotation around the Z-axis at an angle of 2xnj/n
and s to the reflection with respect to the XYZ-plane.

Subgroups ol 1, consist ol dihedral and cyclic groups whose degree nr divides n; e,
the family of the subgroups of D, 1s given by

‘DL =0 onfm o medivides ] and G lmedivides i (35)

where

"

D! o= .’/':"’",SI‘,’, lb/\um|/\— =0~|‘-~,.’”‘“l::

Co= Ak =01 .. .m—1".

Note that D, =D, . C, = le}.

These subgroups cutegorize deformation patterns of regulur polygons. Cyclic groups
C,, denote rotation-symmetric patterns ; the subseript m denotes the number of rotation
symmetries, and the group C| represents completely asymmetric patterns. Dihedral groups
D, indicate line-symmetric patterns ; and the subscript s represents the number of axis of
line symmetry.

The number of elements of a (sub)group. termed the order, expresses the level of
symmetry. The index, which is the ratio ot the order of & group to that of a subgroup,
stands for the difference of the level of symmetry between these groups. For example, the
order of the group 1, is 2m, denoted as |D,,] = 201 the index of the subgroup D, in the
group N, is

t For systems with axisymmetry (being cquivariant to the continuous group /7, ). there appears a group-
theoretic double point with D, -symmetry. It is well known that the resulting bifurcating branches from this point
form a sheet, which is obtained merely by rotating a representative bifurcating branch. In this context. our study
could also be applicable to the secondary bifurcation structure of a /), -syimmetric system.

$In the Schoenflics notation this group is denoted as C,,. whereas N, means another (isomorphic) group
in which s represeats the hall-rotation around the V-axis. They are isomorphic as abstract groups but are
distinguished as subgroups of all isometries.
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[D,1 1Dyl = (2n).(2m) = n m.

4. BIFURCATION BEHAVIOR OF D,- AND C,-SYMMETRIC PATHS

In order to categorize bifurcation paths and points of D,-equivariant systems, we need
to introduce the standard (isotypic) decomposition of the real space X = R" with respect
to D, (see. e.g.. Serre, 1977):

-

) {X,,*@X,,‘@X,. 2 @®X, . @IV X)), forneven,

X, ©X, ®@®r"X,. for n odd. (6)

where X,,. X,_. X,... X,-_ and X, are mutually orthogonal subspaces of X: k is an
integer satisfying | € & < n/2: and the symbol @ expresses the direct sum. Each subspace
corresponds to an irreducible representation: X, . X,_. X, ., and X, ;_ to the irreducible
representations of degree one, and X, (1 < &k < n;2) to those of degree two. In particular,
X, , corresponds to the unit representation. Each space is an invariant set under the group
action G ; for example, T(g) X € X, for all elements g of D,.

As shown in Fujii er al. (1982). a critical eigenvector at a simple critical point belongs
to either the space X,,. X,_. X, or X, ._. On the other hand, two cigenvectors at a
group-theoretic double point belong to the subspace X;, for some k.

Each subspace X7 of X is assoctated with a subgroup ¢{.X'] of D, expressing the
symmetry of the subspace. i.c.

glY¥'] = {geD,|T(y)x = x. forullxe X’}
We have
‘/[’YH + ] = Dlt ' .(I[‘Yn ] = Cn ' .ll[“’n, 2 ] = Dn/! v
glX.: =07, and g¢[X] = C,.
where mis the greatest common divisor of n and &. The number m is an integer inherent

to cach double point.
Likewise, the standard decomposition of the real vector space X with respect to C, reads

 (LeX .e@; '), forneven,
V= 5e@r ), for n odd, D

where ¥,, X, and X, are mutually orthogonal subspaces of X. (.¥, and X, correspond o
the irreducible representations of degree one and X, to those of degree two.) A critical
eigenvector at a simple critical point belongs to cither .Y, or X, 1, the symmetry of which is
given by

.(/[‘?n] = C‘n; .‘/[‘lel = C'ml'

A pair of critical cigenvectors at a group-theoretic double point both belong to X, which
is labeled by

g[“’k] = C,,,.
where, as before, m is the greatest common divisor of n and k.

Simple critical points
According to the standard decomposition (6) for D,. a critical eigenvector for a simple
critical point is invariant under either
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D,,, C,,. D,, 2 Oor D,s s

where a D, .- and a D} .-symmetric eigenvector arise only if 7 is even.
Similarly from eqn (7) for C,. a critical eigenvector for a simple critical point is
invariant under either

C,orC,-.

where a C, .-symmetric eigenvector arises only if n is even.
In view of the symmetry pattern of its critical eigenvector, a simple critical point on a
D,- (respectively C,-)symmetric path can be categorized as below.

(1) If the eigenvector is D,- (respectively C,-)symmetric. the point is generically a limit
point of loading parameter f.
(2) Ifitis not D,- (respectively C,-)symmetric, the point is a simple bifurcation point.

At a simple bifurcation point, two paths branch in the positive and the negative
directions of its critical eigenvector. The subgroup that labels the critical eigenvector also
labels the symmetry patterns of these paths. The subgroup in this manner corresponds one-
to-one to the type of paths.

It follows from eqn (2) that if x is a solution for H(f, x) = 0. then T(g).x also satisfics
H =0, that is,

H(f.T(9)x) =0, forallyeG. (%)

Henee for a stmple bifurcation point, if (f, x) is a sct of solutions for a biturcation path,
that for the other path can be known as (f, T(s).x) for a C,-symmetric bifurcation path and
(. T(r)x)loraD, ,-or D, ,-symmetric path, The difference between the symmetry patterns
of the two paths depend only on the location of the observer. We henceforth identity such
physically equivalent paths and call them an independent bifurcation path. Then only one
independent path exists at a simple bifurcation point.

We deline a bifurcation point to be symmetric if two paths branching in a direction
and its opposite direction correspond to the same independent path. Then a simple bifur-
cation point is neeessarily symmetric.

Group-theoretic double bifurcation points

Consider a group-theoretic double point of a D,- or C-equivariant system, and denote
by C,, the symmetry group associated with the critical eigenvectors at that point. [t should
be emphasized in the case of a D,-equivariant system that there exist a finite number of
critical cigenvectors with symmetry higher than C,, i.e. those which are D/, -symmetric for
some j=1,....n/m; thesc eigenvectors turn out to give the directions of bifurcating
branches.

Let e, und ¢, be two orthonormal real eigenvectors in the kernel space at the group-
theoretic double point. In addition, we can choose ¢, to be invariant under D)} for a D,-
(cquivariant) system. Then an arbitrary eigenvector e* in this subspace is expressed as

= 2w,e 4+ 2w,en.

"~
|

With the use of a complex variable = = w, +w,, which indicates the direction of a bifur-
cation path in the complex plane, this equation yields

e* = (¢, +ier)z+ (¢ —icy)Z, (9)
where i denotes the imaginary unit, and () the complex conjugate of the relevant variable.

Let - = reexp(if)). Then we sce for a D,-system that the eigenvector ¢* is D/,-symmetric
(j=1.....n/m) for 2n/m angles
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=2 =n(j—l)min, j=1,....2n/m. (10)

The two-dimensional kernel space can be identified with the space of variables - and
I It is emphasized that not all of these eigenvectors, in reality, specify the directions of
bifurcation paths. but (z. ?) should satisfy two-dimensional bifurcation equations [M =2
in egn (3)].

h(z.5y=0, i=12 (1)

Whereas the bifurcation behavior for D,- and C,-systems is investigated in Appendix B
from bifurcation eqns (11) by imposing the condition of group symmetry (4). the major
findings of this investigation are summarized below. [t is interesting that the existence of a
potential function for the equilibrium eqns (1) {or. the reciprocity of the system (1)] plays
a substantial role for the existence of bifurcation paths of a C,-system. Propositions 2-5
apply both to a D,-system and a C,-system.

Proposition |

(1) Fora D,-system. bifurcation paths always exist irrespective of the presence of a potential
function. The D,-symmetry implics that the potential exists in an asymptotic sense in the
vicinity of the double point.

(2) Fora C,-system, bifurcation paths exist if it has a potential function. (The presence of
C,~symmetry alone cannot assure the existence of bifurcation paths.)

Here and henceforth, a C,-system is assumed to have i potential function so as to insure
the existence of bifurcation paths.

Proposition 2
The number of biturcation paths is 2n/m, being twice the index a#/m. According to Appendix
B. we can define these 20/m biturcation paths as:

P, path branching toward 0 = a,+ff, j=1,....2n/m, (12)

where ff 1s non-zero for a C,-system but vanishes for a D,-system. Then the path branching
in the opposite direction of P, is expressed as P, ...

Proposition 3

The 2n/m biturcation paths P,(j = 1,..., 2n/m)are divided into two independent bifurcation
phenomena according to the parity of j, irrespective of degree n and index n/m. Every other
path in the O-direction, therefore, is associated with the same phenomenon.

Proposition 4

(1) The point is symmetric when the index #/m is even and asymmetric when odd.

(2) When the index is odd, a pair of paths P, and P,, .., branching in opposite directions,
represent two independent physical phenomena, respectively.

{3) When theindex is even, the pair of paths correspond to a physically equivalent phenom-
cnon.

Proposition 5

(1) For n/m = 3, the loading paramcter f decreases toward one independent path but
increases towird the other. Both branching paths and the bifurcation point are unstable.
(2) For njm = 4, there are three possibilities for the increase or decrease of the loading
parameter f toward the two independent paths. At most one of the independent paths is
stablc.

(3) For n/m = 5. f increases or decreases at the same time toward the two independent
paths. In the former case. one of the paths is stable and the other unstable: the bifurcation
point is stable. In the latter case, both paths and the point are unstable.
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Fig. 4. Three types of axes of line symmetry.

See Fig. B1 in Appendix B for details of this proposition for a D,-system.

Proposition 6

(1) For a D,system, it is only in the directions of D/-symmetric eigenvectors
(/= I.....n/m) that bifurcation paths exist.

(2) Fora C,-system, bifurcation paths exist toward C,-symmetric eigenvectors.

For a D,system, the bifurcation paths always have line-symmetric patterns D),
(/= L.....n/m), with higher symmetry than the symmetry C,, of the whole kernel space.
Symmetry is maximized along the paths, just as maximum or minimum principles govern
various kinds of physical phenomena. Such maximization of symmetry does not occur for
a C,-system.

Proposition 7
Fora D,-system withn meven, D) -symmetric (f = 1, ... n/m) bifurcation paths are further
categorized into two independent physical phenomena according to the parity of j.

This categorization arises from the locution of the axis of line symmetry. Figure 4
shows three types of axis for an s-gon: an axis of V V type connecting two opposite
vertices, that of MM type interseeting two oppostte middle points, and that of V- M type
connecting a vertex and a middle point. Subgroups D}, of D, with odd degree # possess the
axis of V-M type only. Subgroups D/, of D, with even degree n and odd index n/m have
both the axis of V-V and M M type. The axes for D) (respectively D,/ ') with even n/'m
are all of V-V (respectively M-M) type, or all of M -M (respectively V-V) type.

Possible direct branches

Generically possible bifurcation points on a D,- and C,-symmetric paths are either a
simple critical point or a group-theoretic double one. We offer in Table | a complete
categorization of these points and their bifurcating branches.

Table I(a). Direct branches of D,-symmetric paths.

Symmetry of Type of | Index | Type of bifurcation points
bifurcation paths n nfm | Multiplicity | Symmetry

Dyys, 1)312. or Cp Even 2 Sunple Symmetrnc

D o(;=1,.--,n/m) Even/Odd | Odd Double Asymmetric
DIVand DX (=1, nf2m) Fven Even Double Symmetric

m divides nand satisfies < n/2

Table 1{b). Direct branches of C-symmetric paths.

Symmetry of Type of | Index | Type of bifurcation points
bifurcation paths n n/m | Multiplicity | Symmetry
Cusz Even 2 Simple Symmetric

Con Even/Odd | Odd Double Asymmetric

Even Even Double Symunetric

m divides n and satisfies m < n/2
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The parity of n determines the varicty of svmmetry patterns of bifurcation paths. which
are labeled by subgroups of D, or C,. For a D,-symmetric main path. in fact. the bifurcation
paths are either C,- or D/,-symmetric (j = 1.....n m) for n odd. and ¢ither C,-. D, »-. D; -~
D.,-(j=1..... n'm). D) '-(j=1.....n2m) or D -symmetric (j = l.....n2m) for n
even. The C,-. D, »-. and D, ,-symmetric paths branch at symmetric simple bifurcation
points: D.,. D7/~ ' and D,’-symmetric ones at group-theoretic double points.

[t is to be noted that C,-symmetric paths with m < n cannot branch directly from D, -
symmetric paths so that not all subgroups of D, are feasible as the symmetry group of
direct branches of D,.. The direct branches have line-symmetric bifurcation patterns. except
for C,-symmetric ones branching at a simple point.

For a C,-symmetric path. the bifurcation paths are C,-symmetric with m < n. The
C, »-symmetric path branches at a symmetric simple bifurcation point for # even, and the
C,~symmetric one with m < n;2 at a group-theoretic double point.

Implementation in numcerical analysis

Based on the results presented in the previous subsections. the following procedure is
suggested for the numerical analysis of a D,- (respectively C,-) equivariant bifurcation
system.

(1) Obtain a D,- (respectively C,-)equivariant path. At the same time, critical points
on the path and critical cigenvectors of the points are obtained through the cigenvalue
analysis of the tangent-stiffness matrix. (From an engineering standpoint, one often has to
obtain only the first critical point.)

(2) Determine the type of points with reference to Table | by investigating the rank
deficiency of the matrix and the symmetry pattern of the critical cigenvectors,

(3) Obtain an independent bifurcation path at a simple biturcation point and two
independent paths at a group-theoretic double point.

The solution set (f; .v) of a path branching at a simple bifurcation point is to be found
in the direction of the eritical cigenvector, whercas that for the other path can be known
automatically as (f, 7'(g)xv) lor some ye (.

Foradouble point ona ,-symmetric path, it may be diflicult to determine the isotypic
component Xy to which the two critical cigenvectors belong. Instead of this, the symmetry
group g{.X\] of X, is to be obtained to determine the index nfm If the index is odd, the
bifurcation point is asymmetric, and henee two independent bifurcation paths are to be
found in the positive and the negative directions of a D/,-symmetric cigenvector for some
J- I itis even, the bifurcation point is symmetric, and two independent paths can be found
in the directions of D) - and of D,/-symmetric eigenvectors for some J.

For a double point on a C,-symmetric path, the directions of two independent paths
cannot be known through the symmetry pattern of the critical eigenvectors. These paths.
therefore, must be tound on a trial basis unless bifurcation equations are derived at a
considerable cost.

5. BIFURCATION HIERARCHY

Dircect bifurcation paths of D,- and C,-symmetric paths have been identified in the
previous section. These bifurcation paths can undergo further progressive symmetry-break-
ing bifurcation until reaching the completely asymmetric pattern C,. Repeated bifurcations
make up a hicrarchy among bifurcation paths. Since the symmetry group of a bifurcation
path is a subgroup of the group of the main path, we may associate a chain of nested
subgroups of D, with a process of repeated bifurcation. Sub-branches of the paths labeled
by D/, (j = l.....n/m)or C, can be analyzed by the recursive use of Table 1. In the analysis
of bifurcation hicrarchy. the procedure presented in the previous section must be employed
repeatedly.
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For example, Fig. 5 shows the hicrarchies for £, 3, and D,. Bifurcation progresses
in the arrowed directions. During this process, the sotid arrows can be hbypassed but not
the dotted arrows, A bifurcation process D, — 1), — D, made up of only solid arrows,
denotes that a D} -symmetric path can branch directly from a 2 -symmetric one, bypassing
a4 Da-symumetric one. By contrast, D,--— € — O, shows that a Cesymmetric path can
branch from a Dy-symmetric one and a Cy-symmetric one cannot, since the dashed arrow
may not be bypassed. A similar diagram has been devised by Dellnitz and Werner (1989).

We may identify two major hicrarchies: a hicrarchy amony line-symmetric paths D,
and B, (F=1,....n/m) and that among rotationssymmetric ones €, und . All line-
symmetric paths are connccted by solid arrows, and so are all rotation-symmetric ones. A
linc-symmetric path and a rotation-symmetric path with the same degree, in contrast, are
connected by a dashed arrow,

The €, »- and the C,-symmetric bifurcation paths can arise only as a consequence of
repeated symmetry-breaking bifurcation; a C, »-symmetric path, for example, cun branch
only from cither a C,-, D, - or D] ,-symmetric path and not direetly from a D,-symmetric
path. It may be noted, however, that cach subgroup of D, given in egn (35) is potentially
reachable as a bifurcation path type although its actual existence in a particular bifurcation
behavior depends on the numerical properties of the problem in question.

6. NUMERICAL EXAMPLES

The bifurcation behavior of the clastic truss domes of Fig. 1, all subjected to symmetric
loadings, ts deseribed bere by means of the group-theoretic method. All members of these
domes have the same material and sectional propertics, thus realizing symmetric stilTaess
distributions,

A truss dome is equivariant to a group if its geometrical configuration, stiffness
distribution and loading pattern are all preserved by the transformation by each element
of the group. In the discussion of equivariance of domes, their detailed aspects. such as
heights, radi and number of degrees of freedom, are immaterial. fustead of these, line and
rolation symmetrics play a4 primary role. Hence the regulac-triangular dome of Fig. 1(aj,
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Table 2. Branches of D,-equivariant systems.

Symmetry of Symmetry of Index | Type of bifurcation points

main paths bifurcation paths | n/m | Multiplicity | Symmetry

D3, D3 or Cs 2 Simple Symmetric

Dy D} 3 Double Asymmetric

D{"" and DY 6 Double Symmetric

D, Cy 2 Simple Symmetric

Dy 3 Double Asymmetric

Dj C, 2 Simple Symmetric

Dy’ 3 Double Asymmetric

Cy (& 2 Simple Symmetric

C, 3 Double Asymmetric

D), Dy Y. DY ot C, 2 Simple Symmetric

C, C, 3 Double Asymmetric

DYY, DY o € C, 2 Simple Symmetric
) =123

the regular-hexagonal dome of Fig. 1(b) and the rotation-symmetric dome of Fig. 1(c) are
equivariant to D, D, and C,. respectively. Table 2 shows a categorization of bifurcation
paths and points of D-equivariant systems obtained from Table 1. Bifurcation rules for
D and C,. which are subgroups of D,,. can be seen in a part of those for D, in Table 2.

D -equivariant dome

The bifurcation behavior of the D -equivariant truss dome, which has been introduced
in Scction 2, is described here by means of the group-theorctic bifurcation theory presented
in the previous sections.

The critical eigenvectors at the unstable double bifurcation pointa on the D -symmetric
path are labeled by cither D) (j=1,2,3) or C,. The index of DY in Dy is [D,|/|DY] =3
(j=1.2,3), and its parity is odd. According to Propositions 2, 4, 5 and 6, this is an
asymmetric point with six DY -symmetric paths P, and P, (f = 1.2, 3), as we have already
seen in Fig. 3(a). The paths P, P, and Py (respectively P,, Py and P,) correspond to an
independent path, in agreement with Proposition 4.

The bifurcation points ¢ and d, where C-symmetric paths branch from the Df-
symmetric (j = 1,2,3) paths, are simple and symmetric points. An independent path
branches at these simple points, whereas two independent paths branch at double points
a and b, in accordance with Proposition 3.

All these bifurcation phenomena obey the rules in Table 2 and follow the hierarchy in
Fig. 5. The C-symmetric paths, which are theoretically feasible, are absent in these equi-
librium paths. The tasks involved in finding bifurcation paths, especially at double points,
have been reduced greatly owing to the procedure for obtaining bifurcation paths presented
in the previous section.

D-equivariant dome

The bifurcation patterns of the D,-equivariant spherical diamond shell of Fig. 1(b) are
expressed by the subgroups of D ; namely, D, D,. D3. D5 (j=1,2,3). D' (= 1,2,3).
D (j=1.,23). Ci. Ci Cyand C,. Figure 6 shows these patterns in a plane view. The
nodes with the same vertical and radial displacements are denoted by the sume symbol,
such as (@).(O).....(0J). The nodes on the axis of line symmetry do not rotate but stay
on the axis. The nodes clsewhere rotate in such a manner that they satis®y the required line
and the rotation symmetrics.

We computed equilibrium paths for the dome under D -symmetric vertical loadings
applied in such a manner that the vertical component of the loading pattern vector is equal
to 0.5 for the crown node and to unity for other free nodes. Figure 7 shows a schematic
view of these paths. The numbers at the bifurcation points stand for the index. For example,
the index is equal to three for asymmctric double points c and f, to six for a symmetric double
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——-—— axis of line symmetry

Fig. 6. Schematic plane views of bilurcation patterns of the spherical diamond shell (9 -equivariant).
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Fig. 7. Schematic view of bifurcation hicrarchy of the spherical diamond shell (9, -cquivariant).
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point b, and to two for symmetric simple bifurcation points a, d and ¢. An independent path
branches at simple points and two independent ones do at double points; the bifurcation
points are symmetric for even indices and asymmetric for odd oncs. All these bifurcation
phenomena obey the rules in Table 2 and those propositions for double points. In addition.
all subgroups of D, are observed as the labels for the symmetry of paths,

C-equirariant dome

Biturcation patterns of the C -equivariant Schwedler dome of Fig. 1(¢) are expressed
by the subgroups of C, i.c. Cy, C;, Cy and C,. Figure 8 shows solution paths of the dome
computed for symmetric vertical loadings whose vertical components equal 0.5 for the inner
hexagonal nodes and unity for the remaining nodes. From the C-symmetric fundamental
path, C\-symmetric paths branch at a symmetric simple bifurcation point a, and C-
symmetric paths branch at an asymmetric double point b with an odd index |C,|/|C,| = 3.
C-symmetric paths branch from the Ci-symmetric paths at an asymmetric double point ¢
with an odd index |C,)/|C,| = 3. Again, those propositions have been satisfied.

7. CONCLUSIONS

In this paper, we have organized and developed the results of group-theoretic bifur-
cation theory and of a heuristic case study to present a method to describe bifurcation
hicrarchy of symmetric (structural) systems equivariant to D, or C,. With the aid of
bifurcation equations, we have noted that the nature of group-theoretic double bifurcation
points depends entirely on a single variable, namely the index, expressing the degradation
of symmetry at the points. In addition, it is remarked that the bifurcation paths branch at
a group-theoretic double point on a C,-cquivariant system if it has a potential function.

With the use of this method, highly complex bifurcation phenomena of D,- and C,-
equivariant systems can be understood as a hicrarchy of symmetry-breaking bifurcation. A
priori knowledge of bifurcation hicrarchy permits one to analyze the bifurcation phenomena
in a systematic manner. In particular, the complete set of bifurcation paths branching at
group-theoretic double points can be arrived at with reduced work.
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APPENDIX A: A REMARK ON BIFURCATION EQUATIONS OF GRADIENT SYSTEMS

A system of nonlinear egns (1) is called a gradient system if
H=[H)=grad U (AD)

for some scalar (potential) function U. Note that eqns (A1) imply the reciprocity of eqns (1), i.e. the symmetry
of the Jacobian matrix of eqns (1):

CHéx, = EH X, (A2)

Since the reciprocity (A2) implies egns (A1) under some regularity conditions by the Poincaré lemma, the concepts
of “gradient systems™ and “reciprocal systems™ are in fact equivalent,
The observation here is the following theorem.

Thevrem A If the full eqns (1) are a gradient system, so are the reduced bifurcation eqns (3) (hy an appropriute
choice of coordinates). Or in other words, the reduced bifurcation egns (3) inherit the reciprocity of the full eqns
(1),

This principle is independent of, and may be compared to, the well-known important principle (4) that the
reduced bifurcation equations inherit the group symmetry of the full equations. Thus we have two independent
general propertics which are preserved under the Lyapunov-Schmidt procedure. Note also that itis straightforward
to extend this observation to infinite-dimensional case, using the usual framework of a Fredholm operator on a
tHilbert spuce.

The proof of the above theorem is not difficult, as follows. By an appropriate change of the coordinates, we
may assume, using the notation of Scction 3, that x = (w,r) (where we R¥. 0 € RY " ¥) and v can be expressed as
¢ = ¢(f.w) by the implicit function theorem and that the functions /,(f, w) of eqns (3) are given by

h(fow) = HAJow et fow)).

Then the Jacobian matrix J* = (7h,/¢w)) for the reduced equations is given by
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J=J, =105
in terms of the submatrices J,, (i, j = 1.2) of the Jacobian matrix J of the full eqns il). le.J=(J li.j=1.2)and
Ju=(CH ewliij=1,..., M) J . =(@H/wli=1... M. j=M+I,. ... N). etc. The symmetry of J implies
that of J*. This completes the proof.

Consider a double critical point (i.e. M = 2). By choosing (2. 7) in egn (9) as the coordinates of the kernel
space. we put

F(foz.3) = R (fow o w)+ik(fow, ws),

where fis an increment of f from its value at the double point. Let us assume that F can be expanded as

The reciprocity can be expressed in a compact form as follows.

Theorem B. At a double point. the reduced eqns (3) are reciprocal if and only if ¢F(Cz is real. This condition is
equivalent to

(p+ DA, ) =g+ DA, D pg=0.12.. (A3)

Note that the above statement is independent of whether the double point is parametric or group-theoretic.
An important consequence of eqn (A3) is that

Ay, (Nisrealforp=0.1.2...., (Ad)

which plays a key role in the analysis of a double point of a C,-equivariant system; sc¢ Appendix B.

APPENDIX B: GROUP-THEORETIC DOUBLE BIFURCATION POINTS OF D, AND C,-
SYSTEM

The solutions of the two-dimensional bifurcation egns (11) of a group-theoretic double point of a D,-
cquivariant system have been obtained in mathematics (see, c.g., Sattinger, 1979, 1980 Golubitsky ¢f al.. 1988).
In order to make these solutions accessible for structural engineers, they are presented here by means of elementary
calculations.

We consider i double critical point (i.e. M = 2) and identily the kernel space with the space of (2, 2) through
eqn (N, he = wiiw,, F=wy —iw,. [ we put

F(f.2.2) = (o owy) +il(fowowy),

where [ is an increment of £ from its value at the double point (/'= 0 at the point), we see that eqns (11) are
equivalent to a complex equation

F(l.2.5)=0 (81)

since iy and /iy are real. Suppose we can expand Fuas

n
-

Flzhy=Y 3 A )z (B2)

p-0y=0

(A:s is usual with local bifurcation analysis, only finitely many terms are important.) Assuming that
(fowow2) = (0,0,0) corresponds to the double critical point, we have

Aoo(0) = A 0(0) = A, (0) = 0. (83)

As we will see below, A, must follow certain conditions if the system has a potential function (as in Appendix
A) or a D,- (or C,-)symmetry (as shown below).

D.-equivariant system
The D,-equivariance (4) at a group-theoretic point is expressed as follows. Let C,, be the group of symmetry

of the kernel space of the double point. By the choice of ¢,. D, acts on (2, 5) via

ty
[

rpx=ws, ri=wmi s:=3 5

=2,

where

@ = exp (i2nm/n).

Note that n/m > 3. Then the D,-cquivariance (4) is equivalent to
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wF(f.2.5) = F(fiwz. &3,

(B4)
F(fz5) = FUL.220. (BS)
From eqn (B3) we see that
A (Niscealforp.g=0.1..... (B6)
Substitution of eqn (B2} in (B4) yields

pwtgad

S A (N Texp (i2n(p~g—Dmint ~1] =0
et Pg

Hence.

4,41 =0 unlessp—g-1l=kn'. k=021, +2...,
wheren' =nm.

(B7)

Equations (B6} and (B7) are the conditions for D,-symmetry. Under condition (B7). eqn (B2) is rewritten as

k=l gan

F"::.f’ = Z "“’",q(,/q):u*'5q+ Z Z ["ld‘|l»“.d{f):v*,‘hfv*‘"‘g_,,‘];k,,(j‘):‘fv—'”"].
q=0

(B8)
We define the leading part of this equation as:

Folfziy= 3 ANty (N7 0 (BY)
Negen/l-|

A key observation here is that the leading part in eqn (BY) satisfies the condition of regiprocity eqn (A3),

This shows that O,-symmetry implies the existence of a potential function in the asymptotic sense. Put

51(“’1; Wy o= J'(Fa(_ﬁ:.f)).

fatwowy) = A2 90,

where A ) und # () mean the real and imaginary parts of a complex number. Then we have

BoOvowa) = Hdwowy) = oUW,
By, wy) x hofw,, wy) = (’U,’Qu‘:

for some “usymptotic potential™ function U 0w, wy). This function is evaluated to
. o
Uiy, w,) = fw ) dw, 4 | A0, w,) dw,
il ]

= 3 _“ﬂi“(l \}

0«4:: Tt 2"1“'”

T RN LRI I ¥ T[T T o
In polar coordinates = = rrexp (i), this function becomes

Utw,ows) = Oy = b f((-[’i%%)r‘“ Yy W cosn'thin

Baygsa b {0~

x4 A + ; v, . rve e

= 02+ Y S ""U)r““’ B Ay I costn’ Dy (BLO)
tagan -1 g+ 1)

by eqn (B3), where A, denotes the derivative of 4, with respect to /)

The equilibrium eqn (B} has the trivial solution = = 0, corresponding to the D,-symmetric main path. Their
non-triviad solution is determined from #,0 = 0. Putung

17(‘!1. P ) = FOforexp (i), rexp (= i)} exp (ifh)

and using polir coordinates and eyn (B7), we have

I(r’ - E A",‘!_w(_l‘)':w’* Z Z ['lt‘g."‘q‘qtl\)’:.fbkn +-‘f@_..;|.‘.(f)f"w ».!nbn]cﬂs(‘_n,n)‘
o it dwlgwt

HFy =Y
gl

Y s a0 = e sin ko 0),
qwn

(Bi)
The non-trivial solution is to satisfy cquation .#(F) = 0 and hence sin (n'0) = 0, Thercefore,
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O=x,=xz(j-lymn j=1....2nm
are necessary for the existence of non-trivial solutions. These angles are associated with the directions of D,,-
symmetric eigenvectors (f = [.....n m) [see eyn (10)].
If we put

Fiin=Fifirx) i=L2
we see the ssmmetry among the paths from egn (B11). that s,
F,(,I‘.r)=F(f'.r.xz,,d,.,). J=1.... nm, =12 (B12)
1t can be proven by the implicit tunction theorem that, for cach i F(£.r) = 0 can be solved generically for fas
f=rm (BI3)

in the neighborhood of the double point (£.r) = (0,0). Therefore the number of bifurcation paths equals 2 nr.
which is twice the index | D, 1D,

The above argument {see egn (B12)] shows the existence of two distinet sets of bifurcation paths denoted by
Suryand £.(r). Henee the 20 m bifurcation paths are divided into two physically independent paths. Every other
biturcation path in the f-direction is associated with an independent path.

We denote by P, the path branching in the direction of @ = x,(j = ... 2n'm). Paths P, ((j = L.....n'm)
are described by f,(r) and are N '-symmetnic: paths P, by f.(r) and are D}/-symmetric.

A double bifurcation point is symmetric if a pair of paths £, and P, , ... which branch in opposite directions
1 = 1, and 2, + r, correspond to the same function £{i = 1 or 2} it is asymmetric otherwise.

Forn neodd. the pair of paths are denoted by different functions so that the bifurcation point is asymmetric.
Two different paths f£1{r) and f.(r) are connected at the bifurcation point to form a continuous D, -symmetric
path (j = (... o), which is asymmetric with respect to the main path. For nom even, the pair of paths are
symmetnic with respect to the main path, and hence the biturcation pomnt is symmetric.

Dhireet caleulations reveal the following asvmptotic forms of f{r), ¢ = 1,2, when jrl s small, For njm = 3,

Ay ()

HO D

PR BT S

Sice £, (r) and £,(r) have oppostte signs, /s always reduced toward one independent path but increases toward
the other. Foram -4, cqu (B yickds

! o
A R R RGP S P

The coethcients A, (0) ¢ A, (0) deteemine the increase or decrease ot £ For o 22 5,

"'uum 0 : ;
0 ROy, Q- L2,

fitry A -1y
, T - T+ +{ - R -
"'Iu(()) Y ~"m(“)

where g(r) = O(r*) is independent of i Thus / increases or decreases simultancously for all bifurcation paths
according to whether A, (0), A7, () 1s negative or positive.

The stability ol the bifurcation point and branches are now considered. Putting £ to zero in the asymptotic
potential £ in (B10), we obtain

A0y cos (30)r' 3 Wom =3,
Cir.th < |4t~ A ycos (4 jr* 4 iWnm = 4,
A ()t 34 Wnmz3

in the neighborhood of r = 0. Remember that the bifurcation point is stable if C(r,0) is minimized at the
point. The point is a saddle point of € for nm = 3, and thercfore is unstable. For sim = 4, it is stable for
A (0) £ 44,,(0) > 0 but otherwise it is unstable. For am 2 5,00 is stable if 1,,(0) is positive but unstable if
negative.

Next we consider the stability of branches through lincarizations. Let J° = (FH,Cw li, j = 1,2) be the
(asymptotically symmetric) Jacobian matrix of the reduced equations and recall that an equilibrium state is stable
if J° has two positive cigenvalues, and is unstable if it has at least one negative eigenvalue. Since J* is two-
dimensional, it has two positive eigenvalues if and only if both

trace (/') >0 and  det(J7) >0,
where trace (¢) and det (#) is the trace and the determinant of a matrix, respectively. From egqn (A1) we see
trace (J7) = 2ACF 82y det(S) = |FCz) = |0FC3LE.

On the biturcation branch with ¢ = x,. we obtain the following expressions when (7} is small
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Fig. B1. Categorization of local behavior at the group-theoretic double bifurcation point for D,
(aynim = 3. (byn/m =4 (c) n/m = 5.5 stable path: u: unstable path.



Bifurcation hierarchy of symmetric structures 1573

(=1 A4,:00)r ifnm=13,
trace (J7) = A0+ (=D A (O)r®  ifnm =3,

AL (0)F ifnm>5;

—3.4,:(0)7r" ifnm=3,

det(J) 3 {840 dON(= D)4 (0) + Ay (D)) ifnm =4,
(=D'Cnm Ay, OV, (O)"™  ifnm25.

Note also that 4,,(0) < 0 since the trivial solution r = 0 is stable for f < 0.

From these calculations, we can see the stability of the double point. Figure Bl categorizes the asymptotic
behavior of a non-degenerate group-theoretic double bifurcation point for D,. for which the coefficients 4,,.(0).
An(0). A5,(0) + 4,:(0) and A, ... (0) are assumed to be distinct from zero.

For n;m = 3, the bifurcation paths in general are all unstable. For n/m = 4, all branches are unstable if
4:,(0) — 4,.(0) 1s negative. I it is positive, the branches P,, _, are unstable and P, are stable for positive A,,,(0).
and vice versa for negative 4,.(0). For n.m > 5, all branches are unstable if 4.,(0) is negative. If it is positive,
the branches P,,_, are unstable and P, are stable for positive 4, ., ., (0). and vice versa for negative Ay, ,, - (0).

C“‘(’(]Ull ariant ALY stem

For a C,-equivariant system. we have eqn (B7) only and not eqn (B6). Henee Af. . ) is written as egn (BS) but
with complex coeflicients 4 (H [Note that A,,(f) are real for a D L-equivariant system due to the rcﬂutmn
symmetry (BS).] Since 4,‘.‘,(/) (¢ =0.1....) are complex in general in egn (BX). the equation F(/.z.7) =
has no solution. That is, F(£.z.7) = 0 has the trivial solution alone.

However, if the system has a potential, the additional condition (AJ) is satisfied. Then at can be proven by
an elementary argument based on the implicit function theorem that F( £, 2,3) = 0 has bifurcating branches in the
direction of

O=x,+f8 j=1.....2n'm, (Bl4)

where %, is defined inegn (10) and f = arg (4, . 1(0)), where arg () is the argument of a complex variable. The
presence of this angle ff is the only ditfference between 0,-systems and C,-systems, though the values of £ cannot
be known through the consideration of symmetry. Unless higher-order terms are referred to, the determination
of f demands a suru.s of preliminary trial-and-crror analyses.

Since A (I) can be complex for a C,-system, the results obtained for a D,-system need some maodifications.
The nymptnlm formol f,(r) (i = 1.2) ol egn (B13) is given by

(- l)‘l'llll(())l
r

, iWnm=3,
A\u(0)

1
: - A @O+ (=D AN iam = 4
GRS ,_l’.'.(())ll..( VHC=D A it =4
A.,(0
B ,_'( )’: iwm 25,
Am(“)

The stability of the bifurcating paths with 8 = x,+ ff is determined from the following expressions :

(= 1)/ A(A (0 in/m =3,
Ytrace (J) = [A(0)+ (= 1) ' R(A (O] inim =4,

Ay (yr? ifnim25;

=3 () iCafm =3,

det (J7) = {SI=DVRCALON AL (O = [ A (O] ifajm = 4,
(=1 iy (A Yy (O)) A ()7 infm > 5.
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